Skip to main content
Log in

Magnetorheological characteristics of carbonyl iron microparticles with different shapes

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Two different shapes of spherical- and flake-like soft-magnetic carbonyl iron (CI) microparticles were dispersed in silicone oil to prepare magnetorheological (MR) fluids. The magnetic-field dependent rheological behaviors of the MR fluids were scrutinized focusing on their shape effect. Saturation magnetization of the flake-shaped CI was obtained to be slightly lower than that of spherical-shaped CI. However, rheological properties of shear stress, shear viscosity, and storage modulus of the flake-shaped CI MR fluid surpassed those of the spherical-shaped CI MR suspension under applied magnetic field strengths. The flake-shaped CI based MR fluid also demonstrated superior sedimentation stability compared with the spherical-shaped CI. This was due to large surface area, suggesting that the anisotropy of CI particles plays an important role in their MR performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, W.J., H.S. Jung, and H.J. Choi, 2015, Pickering emulsion polymerized smart magnetic poly(methyl methacrylate)/Fe2O3 composite particles and their stimulus-response, RSC Adv. 5, 23094–23100.

    Article  Google Scholar 

  • Ashtiani, M., S.H. Hashemabadi, and A. Ghaffari, 2015, A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater. 374, 716–730.

    Article  Google Scholar 

  • Bell, R.C., E.D. Miller, J.O. Karli, A.N. Vavreck, and D.T. Zimmerman, 2007, Influence of particle shape on the properties of magnetorheological fluids, Int. J. Mod. Phys. B 21, 5018–5025.

    Article  Google Scholar 

  • Bica, I. and E.M. Anitas, 2018, Magnetic field intensity effect on electrical conductivity of magnetorheological biosuspensions based on honey, turmeric and carbonyl iron, J. Ind. Eng. Chem. 64, 276–283.

    Article  Google Scholar 

  • Cao, Q., X. Han, and L. Li, 2014, Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: Magnet systems and manipulation mechanisms, Lab Chip 14, 2762–2777.

    Article  Google Scholar 

  • Claracq, J., J. Sarrazin, and J.P. Montfort, 2004, Viscoelastic properties of magnetorheological fluids, Rheol. Acta 43, 38–49.

    Article  Google Scholar 

  • de Vicente, J., D.J. Klingenberg, and R. Hidalgo-Alvarez, 2011, Magnetorheological fluids: A review, Soft Matter 7, 3701–3710.

    Article  Google Scholar 

  • de Vicente, J., F. Vereda, J.P. Segovia-Gutiérrez, M. del Puerto Morales, and R. Hidalgo-Álvarez, 2010, Effect of particle shape in magnetorheology, J. Rheol. 54, 1337–1362.

    Article  Google Scholar 

  • Emri, I., B.S. von Bernstorff, R. Cvelbar, and A. Nikonov, 2005, Re-examination of the approximate methods for interconversion between frequency-and time-dependent material functions, J. Non-Newton. Fluid Mech. 129, 75–84.

    Article  Google Scholar 

  • Fang, F.F., M.S. Yang, and H.J. Choi, 2008, Novel magnetic composite particles of carbonyl iron embedded in polystyrene and their magnetorheological characteristics, IEEE Trans. Magn. 44, 4533–4536.

    Article  Google Scholar 

  • Fang, F.F., Y.D. Liu, H.J. Choi, and Y. Seo, 2011, Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response, ACS Appl. Mater. Interfaces 3, 3487–3495.

    Article  Google Scholar 

  • Gao, C.Y., M.W. Kim, D.H. Bae, Y.Z. Dong, S.H. Piao, and H.J. Choi, 2017, Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology, Polymer 125, 21–29.

    Article  Google Scholar 

  • Genc, S. and P.P. Phulé, 2002, Rheological properties of magnetorheological fluids, Smart Mater. Struct. 11, 140–146.

    Article  Google Scholar 

  • Ginder, J.M., L.C. Davis, and L.D. Elie, 1996, Rheology of magnetorheological fluids: Models and measurements, Int. J. Mod. Phys. B 10, 3293–3303.

    Article  Google Scholar 

  • Jeon, J. and S. Koo, 2012, Viscosity and dispersion state of magnetic suspensions, J. Magn. Magn. Mater. 324, 424–429.

    Article  Google Scholar 

  • Kim, M.H., K. Choi, J.D. Nam, and H.J. Choi, 2017, Enhanced magnetorheological response of magnetic chromium dioxide nanoparticle added carbonyl iron suspension, Smart Mater. Struct. 26, 095006.

    Article  Google Scholar 

  • Lee, J.W., K.P. Hong, M.W. Cho, S.H. Kwon, and H.J. Choi, 2015, Polishing characteristics of optical glass using PMMAcoated carbonyl-iron-based magnetorheological fluid, Smart Mater. Struct. 24, 065002.

    Article  Google Scholar 

  • Li, Y., J. Li, W. Li, and H. Du, 2014, A state-of-the-art review on magnetorheological elastomer devices, Smart Mater. Struct. 23, 123001.

    Google Scholar 

  • Min, T.H., H.J. Choi, N.H. Kim, K. Park, and C.Y. You, 2017, Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study, Colloid Surf. A-Physicochem. Eng. Asp. 531, 48–55.

    Article  Google Scholar 

  • Mohamad, N., Ubaidillah, S.A. Mazlan, F. Imaduddin, S.B. Choi, and I.I.M. Yazid, 2018, A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease, PLoS One 13, e0191795.

    Google Scholar 

  • Park, B.O., B.J. Park, M.J. Hato, and H.J. Choi, 2011, Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field, Colloid Polym. Sci. 289, 381–386.

    Article  Google Scholar 

  • Pei, L., H. Pang, X. Ruan, X. Gong, and S. Xuan, 2017, Magnetorheology of a magnetic fluid based on Fe3O4 immobilized SiO2 core-shell nanospheres: Experiments and molecular dynamics simulations, RSC Adv. 7, 8142–8150.

    Article  Google Scholar 

  • Peng, G.R., W. Li, T.F. Tian, J. Ding, and M. Nakano, 2014, Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids, Korea-Aust. Rheol. J. 26, 149–158.

    Article  Google Scholar 

  • Seo, Y.P., S. Han, J. Choi, A. Takahara, H.J. Choi, and Y. Seo, 2018, Searching for a stable high-performance magnetorheological suspension, Adv. Mater. 30, 1704769.

    Article  Google Scholar 

  • Seo, Y.P., S. Kwak, H.J. Choi, and Y. Seo, 2016, Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles, J. Colloid Interface Sci. 463, 272–278.

    Article  Google Scholar 

  • Shilan, S.T., S.A. Mazlan, Y. Ido, A. Hajalilou, B. Jeyadevan, S.B. Choi, and N.A. Yunus, 2016, A comparison of fielddependent rheological properties between spherical and platelike carbonyl iron particles-based magneto-rheological fluids, Smart Mater. Struct. 25, 095025.

    Article  Google Scholar 

  • Son, K.J., 2018, A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids, Korea-Aust. Rheol. J. 30, 29–39.

    Article  Google Scholar 

  • Tong, Y., X. Dong, and M. Qi, 2017, High performance magnetorheological fluids with flower-like cobalt particles, Smart Mater. Struct. 26, 025023.

    Article  Google Scholar 

  • Upadhyay, R.V., Z. Laherisheth, and K. Shah, 2014, Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode, Smart Mater. Struct. 23, 015002.

    Article  Google Scholar 

  • Wang, D.H. and W.H. Liao, 2011, Magnetorheological fluid dampers: A review of parametric modelling, Smart Mater. Struct. 20, 023001.

    Article  Google Scholar 

  • Wang, D.M., Y.F. Hou, and Z.Z. Tian, 2013, A novel high-torque magnetorheological brake with a water cooling method for heat dissipation, Smart Mater. Struct. 22, 025019.

    Article  Google Scholar 

  • Xia, Z., X. Wu, G. Peng, L. Wang, W. Li, and W. Wen, 2017, A novel nickel nanowire based magnetorheological material, Smart Mater. Struct. 26, 054006.

    Article  Google Scholar 

  • Yang, J., H. Yan, J. Dai, Z. Hu, and H. Zhang, 2017, The rheological response of carbonyl iron particles suspended in mineral oil solution of 12-hydroxy stearic acid, J. Rheol. 61, 515–524.

    Article  Google Scholar 

  • Zhang, H. and M. Widom, 1995, Field-induced forces in colloidal particle chains, Phys. Rev. E 51, 2099–2103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Kwon, S.H. & Choi, H.J. Magnetorheological characteristics of carbonyl iron microparticles with different shapes. Korea-Aust. Rheol. J. 31, 41–47 (2019). https://doi.org/10.1007/s13367-019-0005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0005-6

Keywords

Navigation