Skip to main content
Log in

Instability and nonlinear dynamics of the MJO in a tropical channel model with vertically varying convective adjustment

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the tropical atmosphere, weather and climate are influenced by dispersive equatorial waves and their coupling with water vapor, deep convection, and rainfall. The dominant mode of variability on intraseasonal time scales is the Madden–Julian Oscillation (MJO), which is still not fully understood. Here we investigate the question: Is the MJO a linearly stable wave or an unstable wave? The linearly stable (i.e., damped) MJO regime, in which case random stochastic forcing provides the source for MJO variability, was previously investigated in a linear version of a model that has a convective adjustment parameterization. Here, to assess the other alternative, nonlinearity is added to the model and allows the study of the linearly unstable MJO regime. Model simulations are performed and evaluated for their ability to generate MJO variability as well as the full spectrum of tropical variability such as convectively coupled equatorial waves (CCEWs). In simulations of unstable growth, nonlinear advection slows the growth, and the wave saturates with reasonable amplitude, structure, speed, and dynamics. In further tests, MJO instability can sometimes excite CCEW variability, but only in a subset of cases. Overall, both the stable and unstable MJOs appear to be reasonable and may arise in different situations due to different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adames, Á.F., Kim, D.: The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J. Atmos. Sci. 73, 913–941 (2016)

    Article  Google Scholar 

  2. Betts, A.K., Miller, M.J.: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic airmass data sets. Quart. J. Roy. Meteor. Soc. 112, 693–709 (1986)

    Google Scholar 

  3. Chen, S., Stechmann, S.N.: Nonlinear traveling waves for the skeleton of the Madden–Julian oscillation. Commun. Math. Sci. 14, 571–592 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dias, J., Leroux, S., Tulich, S.N., Kiladis, G.N.: How systematic is organized tropical convection within the MJO? Geophys. Res. Lett. 40, 1420–1425 (2013)

    Article  Google Scholar 

  5. Dias, J., Sakaeda, N., Kiladis, G.N., Kikuchi, K.: Influences of the MJO on the space-time organization of tropical convection. J. Geophys. Res. Atmos. 122, 8012–8032 (2017)

    Article  Google Scholar 

  6. Gill, A.E.: Atmosphere–Ocean Dynamics. p. 662. Academic Press. San Diego (1982)

  7. Gottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prestrelo, C., Flatau, M., Higgins, W.: A framework for assessing operational Madden–Julian oscillation forecasts. Bull. Am. Meteor. Soc. 91, 1247–1258 (2010)

    Article  Google Scholar 

  8. Hendon, H.H., Salby, M.L.: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci. 51, 2225–2237 (1994)

    Article  Google Scholar 

  9. Hendon, H.H., Wheeler, M., Zhang, C.: Seasonal dependence of the MJO-ENSO relationship. J. Clim. 20, 531–543 (2007)

    Article  Google Scholar 

  10. Hernandez-Duenas, G., Majda, A.J., Smith, L.M., Stechmann, S.N.: Minimal models for precipitating turbulent convection. J. Fluid Mech. 717, 576–611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernandez-Duenas, G., Smith, L.M., Stechmann, S.N.: Stability and instability criteria for idealized precipitating hydrodynamics. J. Atmos. Sci. 72, 2379–2393 (2015)

    Article  Google Scholar 

  12. Hittmeir, S., Klein, R.: Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts. Theor. Comput. Fluid Dyn. 32, 137–164 (2018)

    Article  MathSciNet  Google Scholar 

  13. Holloway, C.E., Neelin, J.D.: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci. 66, 1665–1683 (2009)

    Article  Google Scholar 

  14. Hottovy, S., Stechmann, S.N.: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci. 72, 4721–4738 (2015)

    Article  Google Scholar 

  15. Jones, C.: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Clim. 13, 3576–3587 (2000)

    Article  Google Scholar 

  16. Jones, C., Waliser, D.E., Lau, K.M., Stern, W.: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev. 132, 1462–1471 (2004)

    Article  Google Scholar 

  17. Khouider, B., Majda, A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I: linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)

    Article  Google Scholar 

  18. Khouider, B., St-Cyr, A., Majda, A.J., Tribbia, J.: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multi-cloud parametrization. J. Atmos. Sci. 68, 240–264 (2011)

    Article  Google Scholar 

  19. Kikuchi, K., Kiladis, G.N., Dias, J., Nasuno, T.: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks. Dyn. Clim. (2017). https://doi.org/10.1007/s00382-017-3869-5

  20. Kiladis, G.N., Straub, K.H., Haertel, P.T.: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci. 62, 2790–2809 (2005)

    Article  Google Scholar 

  21. Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H., Roundy, P.E.: Convectively coupled equatorial waves. Rev. Geophys. 47, 2003 (2009)

    Article  Google Scholar 

  22. Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinow, M., Lee, M.-I., Neale, R., Suarez, M., Thayer-Calder, K., Zhang, G.: Application of MJO simulation diagnostics to climate models. J. Clim. 22, 6413–6436 (2009)

    Article  Google Scholar 

  23. Klein, R., Majda, A.J.: Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525–551 (2006)

    Article  Google Scholar 

  24. Lau, W.K.M., Waliser, D.E.: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin (2012)

    Book  Google Scholar 

  25. Liebmann, B., Hendon, H.H., Glick, J.D.: The relationship between tropical cyclones of the Western Pacific and Indian oceans and the Madden–Julian oscillation. J. Meteor. Soc. Jpn. 72, 401–412 (1994). https://doi.org/10.2151/jmsj1965.72.3_401

    Article  Google Scholar 

  26. Lin, J.-L., Kiladis, G.N., Mapes, B.E., Weickmann, K.M., Sperber, K.R., Lin, W., Wheeler, M.C., Schubert, S.D., Del Genio, A., Donner, L.J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P.J., Roeckner, E., Scinocca, J.F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J. Clim. 19, 2665–2690 (2006)

    Article  Google Scholar 

  27. Madden, R.A., Julian, P.R.: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971)

    Article  Google Scholar 

  28. Madden, R.A., Julian, P.R.: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29, 1109–1123 (1972)

    Article  Google Scholar 

  29. Madden, R.A., Julian, P.R.: Observations of the 40–50-day tropical oscillation: a review. Mon. Weather. Rev. 122, 814–837 (1994)

    Article  Google Scholar 

  30. Majda, A.J.: Introduction to PDEs and Waves for the Atmosphere and Ocean. In: Courant Lecture Notes in Mathematics (American Mathematical Society, Providence, RI) vol. 9 (2003)

  31. Majda, A.J., Stechmann, S.N.: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. 106, 8417–8422 (2009)

    Article  Google Scholar 

  32. Majda, A.J., Stechmann, S.N.: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci. 68, 3053–3071 (2011)

    Article  Google Scholar 

  33. Maloney, E.D., Hartmann, D.L.: Modulation of the Eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim. 13, 1451–1460 (2000)

    Article  Google Scholar 

  34. Neelin, J.D., Yu, J.-Y.: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part 1: analytical theory. J. Atmos. Sci. 51, 1876–1894 (1994)

    Article  Google Scholar 

  35. Peixoto, J.P., Oort, A.H.: Physics of Climate. American Institute of Physics, New York (1992)

    Book  Google Scholar 

  36. Raymond, D.J., Fuchs, Ž.: Moisture modes and the Madden–Julian oscillation. J. Clim. 22, 3031–3046 (2009)

    Article  Google Scholar 

  37. Raymond, D.J., Herman, M.J.: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst. 3, 2011MS000079 (2011)

  38. Rui, H., Wang, B.: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci. 47, 357–379 (1990)

    Article  Google Scholar 

  39. Salby, M.L., Garcia, R.R., Hendon, H.H.: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci. 51, 2344–2367 (1994)

    Article  Google Scholar 

  40. Sobel, A., Maloney, E.: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 70, 187–192 (2013)

    Article  Google Scholar 

  41. Sperber, K.R., Kim, D.: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett. 13, 187–193 (2012)

    Article  Google Scholar 

  42. Stechmann, S.N., Hottovy, S.: Unified spectrum of tropical rainfall and waves in a simple stochastic model. Geophys. Res. Lett. 44, 10713–10724 (2017)

    Article  Google Scholar 

  43. Stechmann, S.N., Majda, A.J.: Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Weather Rev. 143, 395–416 (2015)

    Article  Google Scholar 

  44. Stechmann, S.N., Majda, A.J., Khouider, B.: Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn. 22, 407–432 (2008)

    Article  MATH  Google Scholar 

  45. Stechmann, S.N., Ogrosky, H.R.: The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett. 41, 9097–9105 (2014)

    Article  Google Scholar 

  46. Takayabu, Y.N.: Large scale cloud disturbances associated with equatorial waves. Part I: spectral features of the cloud disturbances. J. Meteor. Soc. Jpn. 72, 433–449 (1994)

    Article  Google Scholar 

  47. Thual, S., Majda, A.J.: A suite of skeleton models for the MJO with refined vertical structure. Math. Clim. Weather Forcast. 1, 2353–6438 (2015)

    MATH  Google Scholar 

  48. Thual, S., Majda, A.J., Stechmann, S.N.: A stochastic skeleton model for the MJO. J. Atmos. Sci. 71, 697–715 (2014)

    Article  Google Scholar 

  49. Waliser, D., Sperber, K., Hendon, H., Kim, D., Maloney, E., Wheeler, M., Weickmann, K., Zhang, C., Donner, L., Gottschalck, J., Higgins, W., Kang, I.-S., Legler, D., Moncrieff, M., Schubert, S., Stern, W., Vitart, F., Wang, B., Wang, W., Woolnough, S.: MJO simulation diagnostics. J. Clim. 22, 3006–3030 (2009)

    Article  Google Scholar 

  50. Wang, B., Liu, F., Chen, G.: A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett. 3, 34 (2016). https://doi.org/10.1186/s40562-016-0066-z

    Article  Google Scholar 

  51. Wang, B., Rui, H.: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci. 47, 397–413 (1990)

    Article  Google Scholar 

  52. Wei, Y., Liu, F., Mu, M., Ren, H.-L.: Planetary scale selection of the Madden–Julian Oscillation in an air-sea coupled dynamic moisture model. Dyn. Clim. (2017). https://doi.org/10.1007/s00382-017-3816-5

  53. Wheeler, M., Kiladis, G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999)

    Article  Google Scholar 

  54. Zhang, C.: Madden–Julian oscillation. Rev. Geophys. 43, 2003 (2005)

    Google Scholar 

  55. Zhang, C., Gottschalck, J., Maloney, E.D., Moncrieff, M.W., Vitart, F., Waliser, D.E., Wang, B., Wheeler, M.C.: Cracking the MJO nut. Geophys. Res. Lett. 40, 1223–1230 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The research of S.H. is partially supported by the National Science Foundation under Grant No. DMS-1815061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Reed Ogrosky.

Additional information

Communicated by Rupert Klein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogrosky, H.R., Stechmann, S.N. & Hottovy, S. Instability and nonlinear dynamics of the MJO in a tropical channel model with vertically varying convective adjustment. Theor. Comput. Fluid Dyn. 33, 307–323 (2019). https://doi.org/10.1007/s00162-019-00495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00495-x

Keywords

Navigation