Skip to main content
Log in

Investigation on thermal stability and flame spread behavior of new and aged fine electrical wires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal properties and fire propagation performance were studied for the new and aged electrical wires. Two fine electrical wires were tested using the DSC–TG and a flame spread apparatus. The main objective is to understand the thermal aging effect because the aging of electrical wire is inevitable in real service conditions. The significant discoloration occurs for PC sample during the thermal aging, while slightly changes for PN sample. The microstructure of all samples surface presents relatively smooth. The diffusion of metal from inner core to polymer insulation was discovered by the XPS. The change of these parameters including melting temperature, heat of melting, onset temperature of decomposition, mass loss, etc., is observable and complicated. The metal core also has the effect on properties of polymer insulation during the thermal aging. The difference of thermal properties between new and aged electrical wires shows that the chemical composition and structure of polymer insulation change due to thermal degradation and metal catalysis. Finally, the influence of thermal aging on the flame spread rate was also discussed. This study indicates that thermal aging coupled with the metal catalysis can promote the degradation and change the thermal or fire spread properties of polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kobayashi Y, Huang X, Nakaya S, Tsue M, Fernandez-Pello C. Flame spread over horizontal and vertical wires: the role of dripping and core. Fire Safety J. 2017;91:112–22.

    Article  CAS  Google Scholar 

  2. Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J Hazard Mater. 2018;342:306–16.

    Article  CAS  Google Scholar 

  3. Fujita O, Nishizawa K, Ito K. Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity. Proc Combust Inst. 2002;29(2):2545–52. https://doi.org/10.1016/S1540-7489(02)80310-8.

    Article  CAS  Google Scholar 

  4. Nakamura Y, Yoshimura N, Ito H, Azumaya K, Fujita O. Flame spread over electric wire in sub-atmospheric pressure. Proc Combust Inst. 2009;32(2):2559–66. https://doi.org/10.1016/j.proci.2008.06.146.

    Article  CAS  Google Scholar 

  5. Fujita O, Kyono T, Kido Y, Ito H, Nakamura Y. Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc Combust Inst. 2011;33(2):2617–23. https://doi.org/10.1016/j.proci.2010.06.123.

    Article  CAS  Google Scholar 

  6. Huang XY, Nakamura Y, Williams FA. Ignition-to-spread transition of externally heated electrical wire. Proc Combust Inst. 2013;34(2):2505–12. https://doi.org/10.1016/j.proci.2012.06.047.

    Article  CAS  Google Scholar 

  7. Hu LH, Zhang YS, Yoshioka K, Izumo H, Fujita O. Flame spread over electric wire with high thermal conductivity metal core at different inclinations. Proc Combust Inst. 2015;35(3):2607–14. https://doi.org/10.1016/j.proci.2014.05.059.

    Article  CAS  Google Scholar 

  8. Bakhman NN, Aldabaev LI, Kondrikov BN, Filippov VA. Burning of polymeric coatings on copper wires and glass threads: I. Flame propagation velocity. Combust Flame. 1981;41(1):17–34.

    Article  CAS  Google Scholar 

  9. Kikuchi M, Fujita O, Ito K, Sato A, Sakuraya T. Experimental study on flame spread over wire insulation in microgravity. Twenty Seventh Symp (Int) Combust. 1998;27(2):2507–14.

    Article  Google Scholar 

  10. Citerne JM, Dutilleul H, Kizawa K, Nagachi M, Fujita O, Kikuchi M, et al. Fire safety in space: investigating flame spread interaction over wires. Acta Astronaut. 2016;126:500–9. https://doi.org/10.1016/j.actaastro.2015.12.021.

    Article  Google Scholar 

  11. Zhao YL, Chen J, Chen X, Lu SX. Pressure effect on flame spread over polyethylene-insulated copper core wire. Appl Therm Eng. 2017;123:1042–9. https://doi.org/10.1016/j.applthermaleng.2017.05.138.

    Article  CAS  Google Scholar 

  12. Miyamoto K, Huang XY, Hashimoto N, Fujita O, Fernandez-Pellob C. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Safety J. 2016;86:32–40. https://doi.org/10.1016/j.firesaf.2016.09.004.

    Article  CAS  Google Scholar 

  13. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O. Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst. 2015;35(3):2683–9. https://doi.org/10.1016/j.proci.2014.09.003.

    Article  CAS  Google Scholar 

  14. Lim SJ, Park SH, Park J, Fujita O, Keel SI, Chung SH. Flame spread over inclined electrical wires with AC electric fields. Combust Flame. 2017;185:82–92. https://doi.org/10.1016/j.combustflame.2017.07.010.

    Article  CAS  Google Scholar 

  15. Takano Y, Fujita O, Shigeta N, Nakamura Y, Ito H. Ignition limits of short-term overloaded electric wires in microgravity. Proc Combust Inst. 2013;34(2):2665–73. https://doi.org/10.1016/j.proci.2012.06.064.

    Article  CAS  Google Scholar 

  16. He H, Zhang Q, Tu R, Zhao L, Liu J, Zhang Y. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. J Hazard Mater. 2016;320:628–34. https://doi.org/10.1016/j.jhazmat.2016.07.070.

    Article  CAS  PubMed  Google Scholar 

  17. Tewarson A, Lee J, Pion R. Categorization of cable flammability, part I, experimental evaluation of flammability parameters of cables using laboratory-scale apparatus. EPRI (Electric Power Research Institute, Palo Alto, CA) Project RP 1165–1, Factory Mutual Research Corporation, Norwood, MA; 1979.

  18. Fernandez-Pello A, Hasegawa H, Staggs K, Lipska-Quinn A, Alvares N. A study of the fire performance of electrical cables. Fire Safety Sci. 1991;3:237.

    Article  Google Scholar 

  19. Barnes MA, Briggs PJ, Hirschler MM, Matheson AF, O’Neill TJ. A comparative study of the fire performance of halogenated and non-halogenated materials for cable applications. Part II tests on cable. Fire Mater. 1996;20(1):17–37.

    Article  CAS  Google Scholar 

  20. Elliot P, Whiteley R. A cone calorimeter test for the measurement of flammability properties of insulated wire. Polym Degrad Stabil. 1999;64(3):577–84.

    Article  CAS  Google Scholar 

  21. Grayson S, Van Hees P, Green AM, Breulet H, Vercellotti U. Assessing the fire performance of electric cables (FIPEC). Fire Mater. 2001;25(2):49–60.

    Article  CAS  Google Scholar 

  22. McGrattan KB, Lock AJ, Marsh ND, Nyden MR. Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE): phase 1-horizontal trays. NUREG/CR-7010, U.S.NRC; 2012.

  23. Zavaleta P, Audouin L. Cable tray fire tests in a confined and mechanically ventilated facility. Fire Mater. 2018;42(1):28–43.

    Article  CAS  Google Scholar 

  24. Emanuelsson V, Simonson M, Gevert T. The effect of accelerated ageing of building wires. Fire Mater. 2007;31(5):311–26. https://doi.org/10.1002/fam.944.

    Article  CAS  Google Scholar 

  25. Grzybowski S, Rakowska A, Thompson JE. Aging of polyethylene for cable insulation. IEEE Trans Electr Insul. 1987;EI-22(6):729–34. https://doi.org/10.1109/tei.1987.298934.

    Article  CAS  Google Scholar 

  26. Motori A, Sandrolini F, Montanari GC. A contribution to the study of aging of XLPE insulated cables. IEEE Trans Power Deliv. 1991;6(1):34–42. https://doi.org/10.1109/61.103719.

    Article  CAS  Google Scholar 

  27. Behera AK, Beck CE, Alsammarae A. Cable aging phenomena under accelerated aging conditions. IEEE Trans Nucl Sci. 1996;43(3 PART 2):1889–93. https://doi.org/10.1109/23.507241.

    Article  Google Scholar 

  28. Zaikov GE, Gumargalieva KZ, Pokholok TV, Moiseev YV. PVC wire coatings: part I-ageing process dynamics. Int J Polym Mater Polym Biomater. 1998;39(1–2):79–125.

    Article  CAS  Google Scholar 

  29. Jakubowicz I, Yarahmadi N, Gevert T. Effects of accelerated and natural ageing on plasticized polyvinyl chloride (PVC). Polym Degrad Stabil. 1999;66(3):415–21. https://doi.org/10.1016/S0141-3910(99)00094-4.

    Article  CAS  Google Scholar 

  30. Densley J. Ageing mechanisms and diagnostics for power cables: an overview. IEEE Electr Insul Mag. 2001;17(1):14–22. https://doi.org/10.1109/57.901613.

    Article  Google Scholar 

  31. Boukezzi L, Boubakeur A. Prediction of mechanical properties of XLPE cable insulation under thermal aging: neural network approach. IEEE Trans Dielectr Electr Insul. 2013;20(6):2125–34. https://doi.org/10.1109/TDEI.2013.6678861.

    Article  Google Scholar 

  32. Quennehen P, Royaud I, Seytre G, Gain O, Rain P, Espilit T, et al. Determination of the aging mechanism of single core cables with PVC insulation. Polym Degrad Stabil. 2015;119:96–104.

    Article  CAS  Google Scholar 

  33. Campbell FJ. Problems with aging wiring in Naval aircraft. NASA. Lewis research center, First NASA workshop on wiring for space applications; 1994. p. 61–71.

  34. Wang Z, Wang J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J Therm Anal Calorim. 2019;135(6):3115–22.

    Article  CAS  Google Scholar 

  35. Oluwoye I, Altarawneh M, Gore J, Dlugogorski BZ. Oxidation of crystalline polyethylene. Combust Flame. 2015;162(10):3681–90.

    Article  CAS  Google Scholar 

  36. Li J, Li H, Wang Q, Zhang X. Accelerated inhomogeneous degradation of XLPE insulation caused by copper-rich impurities at elevated temperature. IEEE Trans Dielectr Electr Insul. 2016;23(3):1789–97.

    Article  CAS  Google Scholar 

  37. Maalihan RD, Pajarito BB. Relationship between tensile modulus and oxygen uptake of pro-oxidant loaded low-density polyethylene films during heat aging. Key Eng Mater. 2016;705:72–6. https://doi.org/10.4028/www.scientific.net/KEM.705.72.

    Article  Google Scholar 

  38. Zhang JZ, Lin SY, Chu WK, Kusy RP, Whitley JQ. The diffusion of metal in polymer films. Vacuum. 1989;39(2–4):143–5.

    Article  CAS  Google Scholar 

  39. Hansen CM. Diffusion in polymers. Polym Eng Sci. 1994;302(20):252–8.

    Google Scholar 

  40. Quintiere JG. Fundamentals of fire phenomena. Chichester: Wiley; 2006.

    Book  Google Scholar 

  41. Wang Z, Wei R, Ning X, Xie T, Wang J. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2019;137(2):461–71. https://doi.org/10.1007/s10973-018-7957-5.

    Article  CAS  Google Scholar 

  42. Sibulkin M, Kim JVC Jr. The dependence of flame propagation on surface heat transfer I. Downward burning. Combust Sci Technol. 1977;14(1–3):43–56.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51376172). The authors gratefully acknowledge all of this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wei, R., Ouyang, D. et al. Investigation on thermal stability and flame spread behavior of new and aged fine electrical wires. J Therm Anal Calorim 140, 157–165 (2020). https://doi.org/10.1007/s10973-019-08778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08778-5

Keywords

Navigation