Skip to main content
Log in

Spark Plasma Sintering of Cu-(LaB6-TiB2) Metal-Ceramic Composite and Its Physical-Mechanical Properties

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A metal-ceramic composite Cu-(LaB6-TiB2) has been produced by the spark plasma sintering. The microstructure, phase composition, mechanical properties and resistivity of the composite are studied. An effective method for reinforcing the interface between the copper matrix and reinforced ceramic particles LaB6-TiB2 has been proposed and implemented. It is demonstrated that consolidation of the metal-ceramic composite by using LaB6-TiB2 particles with naked fibers almost doubles the material's strength. Furthermore, the use of reinforced ceramic particles provides the electrical conductivity on a level with the best materials for resistance-welding electrodes (88% IACS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, J.R., Copper and Copper Alloys, ASM International: Materials Park, 2001.

    Google Scholar 

  2. Lu, K., The future of metals, Science, 2010, vol. 326, no. 16, pp. 319–320.

    Article  Google Scholar 

  3. Yang, Z., Liu, Y., Tian, B., and Zhang, Y., Hot compression performance of TiClO/Cu-Al2O3 composite prepared by vacuum hot-pressed sintering, Adv. Mater. Res., 2013, vol. 750–752, pp. 99–102.

    Article  CAS  Google Scholar 

  4. Zou, C., Chen, Z., Kang, H., Wang, W., Li, R., Li, T., and Wang, T., Study of enhanced dry sliding wear behavior and mechanical properties of Cu-TiB2 composites fabricated by in situ casting process, Wear, 2017, vol. 392–393, pp. 118–125.

    Article  CAS  Google Scholar 

  5. Wang, F., Li, Y., Wang, X., Koizumi, Y., Kenta, Y., and Chiba, A., In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling, J. Alloys Comp., 2016, vol. 657, pp. 122–132.

    Article  CAS  Google Scholar 

  6. Zhang, R., Gao, L., and Guo, J., Preparation and characterization of coated nanoscale Cu/SiCp composite particles, Ceram. Int., 2004, vol. 30, no. 3, pp. 401–404.

    Article  CAS  Google Scholar 

  7. Zhu, C., Li, W., He, X., Zhang, X., and Han, J., Study on the behavior in thermal shock and ablation resistance of TiC-TiB2/Cu ceramic-matrix composite, J. Aeronaut. Mater., 2003, vol. 23, pp. 15–19.

    CAS  Google Scholar 

  8. Bagheri, A., The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles, J. Alloys Compd., 2016, vol. 676, pp. 120–126.

    Article  CAS  Google Scholar 

  9. Tayeh, T., Douin, J., Jouannigot, S., Zakhour, M., Nakhl, M., Silvain, J.-E, and Bobet, J.-L., Hardness and Young's modulus behavior of Al composites reinforced by nanometric TiB2 elaborated by mechanosynthesis, Mater. Sci. Eng. A., 2014, vol. 591, pp. 1–8.

    Article  CAS  Google Scholar 

  10. Tu, J.P., Wang, N.Y., Yang, Y.Z., Qi, W.X., Liu, E., Zhang, X.B., Lu, H.M., and Liu, M.S., Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing, Mater. Lett., 2002, vol. 52, pp. 448–452.

    Article  CAS  Google Scholar 

  11. Ying, D.Y, and Zhang, D.L., Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater Sci. Eng. A., 2000, vol. 286, pp. 152–156.

    Article  Google Scholar 

  12. Goto, T., Matsui, H., Settai, R., and Sakatsume, S., Acoustic de Haas-van Alphen effect and electron-strain interaction in f-electron systems, Physica B: Cond. Matter, 1993, vol. 186–188, pp. 107–111.

    Article  Google Scholar 

  13. Aono, M., Nishitani, R., Oshima, C., Tanaka, T., Bannai, E., and Kawai, S., Direct observation of LaB6(001) surface at high temperatures by X-ray and ultraviolet photoelectron spectroscopy, low energy electron diffraction, auger electron spectroscopy, and work function measurements, J. Appl. Phys., 1979, vol. 50, no. 7, pp. 4802–4807.

    Article  CAS  Google Scholar 

  14. Mandrus, D., Sales, B.C., and Jin, R., Localized vibrational mode analysis of the resistivity and specific heat of LaB6, Phys. Rev. B. Solid State, 2001, vol. 64, no. 1, art. 012302.

    Google Scholar 

  15. Qi, K.C., Lin, Z.L., Chen, W.B., Cao, G.C., Cheng, J.B., and Sun, X.W., Formation of extremely high current density LaB6 field emission arrays via e-beam deposition, Appl. Phys. Lett., 2008, vol. 93, no. 9, art. 093503.

    Google Scholar 

  16. Kosolapova, T. Ya., Dvorina, L.A., and Sasov, A.M., Production of refractory compound materials for electronic engineering applications by the powder metallurgy method, Soviet Powder Metall. Metal Ceram., 1985, vol. 24, no. 9, pp. 694–697.

    Article  Google Scholar 

  17. Basu, S.N., Hubbard, K., Hirvonen, J-P., Mitchell, T.E., and Nastasi, M., Microstructure and stability of TiB2 and Cu multilayers, Mat. Res. Soc. Symp. Proc., 1990, vol. 187, pp. 156–160.

    Article  Google Scholar 

  18. Loboda, P.L., Soloviova, T.O., Bogomol, Yu.L, et al., Effect of the crystallization kinetic parameters on the structure and properties of a eutectic alloy of the LaB6-TiB2 system, J. Superhard Mater, 2015, vol. 37, no. 6, pp. 394–401.

    Article  Google Scholar 

  19. Badica, P., Crisan, A., Aldica, G., Endo, K., Borodianska, H., Togano, K., Awaji, S., Watanabe, K., Sakka, Y., and Vasylkiv, O., Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials, Sci. Technol. Adv. Mater, 2011, vol. 12, pp. 1–13.

    Article  CAS  Google Scholar 

  20. Demirskyi, D., Borodianska, H., Agrawal, D., Ragulya, A., Sakka, Y., and Vasylkiv, O., Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, J. Alloys Compd., 2012, vol. 523, pp. 1–10.

    Article  CAS  Google Scholar 

  21. Solodkyi, I., Borodianska, H., Zhao, T., Sakka, Y., Badica, P., and Vasylkiv, O., B6O ceramic by in-situ reactive spark plasma sintering of a B2O3 and B powder mixture, J. Ceram. Soc. Japan, 2014, vol. 122, pp. 336–340.

    Article  CAS  Google Scholar 

  22. Zagorodnya, E.V., Loboda, P.L., Bogomol, I., Solodhyy E.V., andZyma, R.A., Microstructure and mechanical properties of the eutectic LaB6-TiB2 alloy obtained by electrodischarge sintering, Metallofizika i Noveishie Tekhnologii, 2011, vol. 33, pp. 351–360.

    Google Scholar 

  23. Solodkyi, I., Xie, S.S., Zhao, T., Borodianska, H., Sakka, Y., and Vasylkiv, O., Synthesis of B6O powder and spark plasma sintering of B6O and B6O-B4C ceramics, J. Ceram. Soc. Japan, 2013, vol. 121, pp. 950–955.

    Article  CAS  Google Scholar 

  24. Solodkyi, I., Demirskyi, D., Sakka, Y., and Vasylkiv, O., Hardness and toughness control of brittle boron suboxide ceramics by consolidation of star-shaped particles by spark plasma sintering, Ceram. Int., 2016, vol. 42, pp. 3525–3530.

    Article  CAS  Google Scholar 

  25. Dziadon, A., and Konieczny M., Structural transformations at the Cu-Ti interface during synthesis of copper-inter-metallics layered composite, Metallic Materials, 2004, vol. 42, pp. 42–50.

    CAS  Google Scholar 

  26. Sari, S., Senberber, E.T., Yildirim, M., Kipcak, A.S., Yuksel, S.A., and Derun, E.M., Lanthanum borate synthesis via the solid-state method from a La2O3 precursor: Electrical and optical properties, Mater. Chem. Phys., 2017, vol. 200, pp. 196–203.

    Article  CAS  Google Scholar 

  27. Loboda, P.L., Physical-Chemical Background of the Development of New Boride Materials for Electronics and Elaboration of ceramic Cathode Assemblies of Improved Effectiveness, Extended Abstract of Dr. Sci. (Eng) Dissertation, Kyiv: Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, 2004.

    Google Scholar 

  28. Xu, Y.S., Jin, C.P., Li, P., Xu, Y.H., Microstructure and properties of the dispersion-strengthened Cu-ZrO2 composite for application of Spot-welding electrode, Adv. Mater. Res., 2014, vol. 887–888, pp. 32–38.

    Google Scholar 

  29. Zhang, Z., Sheng, Y., Xu, X., Li, W., Microstructural features and mechanical properties of in situ formed ZrB2/Cu composites, Adv. Eng. Mater, 2015, vol. 17, no. 9, pp. 1338–1343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Soloviova.

Additional information

Ukrainian Text © The Author(s), 2019, published in Sverkhtverdye Materialy, 2019, Vol. 41, No. 4, pp. 3–12.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviova, T.O., Solodkyi, I.V. & Loboda, P.I. Spark Plasma Sintering of Cu-(LaB6-TiB2) Metal-Ceramic Composite and Its Physical-Mechanical Properties. J. Superhard Mater. 41, 213–220 (2019). https://doi.org/10.3103/S1063457619040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619040014

Keywords

Navigation