Skip to main content
Log in

Nonlinear multibody dynamics and finite element modeling of occupant response: part I—rear vehicle collision

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

With the rise in vehicle ownership, the need to reduce the risk of injury among vehicle occupants that arises from vehicle collisions is important to occupants, insurers, manufacturers and policy makers alike. The human head and neck are of special interest, due to their vulnerable nature and the severity of potential injury in these collisions. This work is divided into two parts: In Part I, we focus our attention to modeling rear collision that could lead to whiplash. Specifically, two multibody dynamics (MBD) models of the cervical spine of the 50th percentile male are developed using realistic geometries, accelerations and biofidelic variable intervertebral rotational stiffness. Furthermore, nonlinear finite element (FE) simulations of two generic compact sedan vehicles in rear collision scenario were performed. Using the acceleration profiles measured at the driver’s seat of the colliding vehicles, FE simulation of a seated and restrained occupant in rear collision was performed to determine the occupant response. The resultant accelerations, measured at the T1 vertebra of the occupant model, were used as an input to the MBD models to obtain their kinematic response. Validation of the MBD models shows great agreement with experimentally published data. Comparison between the MBD and FE simulations for a 32 km/h vehicle-to-vehicle impact shows similar trends in head trajectory. However, the MBD models reported less peak head displacements compared to the FE model. This is attributed to the failure of the anterior longitudinal ligament at the mid cervical spine leading to increased intervertebral rotation in the FE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amevo, B., Worth, D., Bogduk, N.: Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin. Biomech. 6, 111–117 (1991). https://doi.org/10.1016/0268-0033(91)90008-E

    Article  Google Scholar 

  • Anderst, W., Baillargeon, E., Donaldson, W., Lee, J., Kang, J.: Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension. Spine (Phila. Pa. 1976) 38, E594–E601 (2013). https://doi.org/10.1097/brs.0b013e31828ca5c7

    Article  Google Scholar 

  • Arun, M.W., Humm, J.R., Yoganandan, N., Pintar, F.A.: Biofidelity evaluation of a restrained whole body finite element model under frontal impact using kinematics data from PMHS Sled Tests. In: IRCOBI Conference Proceedings (No. IRC-15-69) (2015)

  • Biddis, E.A., Bogoch, E.R., Meguid, S.A.: Three-dimensional finite element analysis of prosthetic finger joint implants. Int. J. Mech. Mater. Des. 1, 317–328 (2004). https://doi.org/10.1007/s10999-005-3308-3

    Article  Google Scholar 

  • Bowman, B.M., Schneider, L.W., Lustick, L.S., Anderson, W.R., Thomas, D.J.: Simulation analysis of head and neck dynamic response. In: 28th Stapp Car Crash Conference, pp. 173–205 (1984)

  • Brady, A.J.: The three element model of muscle mechanics: its applicability to cardiac muscle. Physiologist 10, 75–86 (1967)

    Google Scholar 

  • Camacho, D.L., Nightingale, R.W., Robinette, J.J., Vanguri, S.K., Coates, D.J., Myers, B.S.: Experimental flexibility measurements for the development of a computational head-neck model validated for near-vertex head impact. In: SAE Technical Paper 97334, pp. 473–486 (1997). https://doi.org/10.4271/973345

  • Caputo, F., Lamanna, G., Soprano, A.: On the evaluation of the overloads coming from the use of seat-belts on a passenger railway seat. Int. J. Mech. Mater. Des. 8, 335–348 (2012). https://doi.org/10.1007/s10999-012-9199-1

    Article  Google Scholar 

  • Cholewicki, J., Panjabi, M.M., Nibu, K., Babat, L.B., Grauer, J.N., Dvorak, J.: Head kinematics during in vitro whiplash simulation. Accid. Anal. Prev. 30, 469–479 (1998)

    Article  Google Scholar 

  • Combset, J.J.: Current statues and future plans of the GHBMC (global human body models consortium). In: 6th International Symposium: Human Modeling and Simulation in Automotive Engineering, Heidelberg, Germany (2016)

  • Cronin, D.S.: Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J. Mech. Behav. Biomed. Mater. 33, 55–66 (2014). https://doi.org/10.1016/j.jmbbm.2013.01.006

    Article  Google Scholar 

  • Cummings, J.R., Osterholt, G.D., Van Calhoun, D., Biller, B.A.: Occupant friction coefficients on various combinations of seat and clothing. In: SAE Technical Paper 2009-01-1672, p. 11 (2009)

  • Davidsson, J., Deutscher, C., Hell, W., Svensson, M.Y.: Human volunteer kinematics in rear-end sled collisions. J. Crash Prev. Inj. Control 2, 319–333 (2001)

    Article  Google Scholar 

  • Deng, Y.-C., Li, X., Liu, Y.: Modeling of the human cervical spine using finite element techniques. In: 1999 SAE International Congress and Exposition., Detroit, MI (1999)

  • Dvorak, J., Froehlich, D., Penning, L., Baumgartner, H., Panjabi, M.M.: Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine (Phila. Pa. 1976) 13, 748–755 (1988)

    Article  Google Scholar 

  • Elemance LLC: GHBMC User Manual: M50 Detailed Occupant, Version 4.5 for LS-DYNA (2016)

  • Elliott, B., Goswami, T.: Implant material properties and their role in micromotion and failure in total hip arthroplasty. Int. J. Mech. Mater. Des. 8, 1–7 (2012). https://doi.org/10.1007/s10999-011-9172-4

    Article  Google Scholar 

  • Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39, 2152–2162 (2011). https://doi.org/10.1007/s10439-011-0315-4

    Article  Google Scholar 

  • Forman, J.L., Kent, R.W., Mroz, K., Pipkorn, B., Bostrom, O., Segui-Gomez, M.: Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. Ann. Adv. Automot. Med. 56, 109–124 (2012)

    Google Scholar 

  • Foster, J.K., Kortge, J.O., Wolanin, M.J.: Hybrid III-A biomechanically-based crash test dummy. In: 21st Stapp Car Crash Conference (1977)

  • Garcia, T.: A biomechanical evaluation of whiplash using a multi-body dynamic model. J. Biomech. Eng. 125, 254 (2003). https://doi.org/10.1115/1.1556856

    Article  Google Scholar 

  • Gayzik, F.S., Moreno, D.P., Vavalle, N.A., Rhyne, A.C., Stitzel, J.D.: Development of the global human body models consortium mid-sized male full body model. In: International Workshop on Human Subjects for Biomechanical Research, vol. 39 (2011)

  • Giordano, C., Kleiven, S.: Development of a 3-year-old child fe head model, continuously scalable from 1.5- to 6-year-old. In: Proceedings of the IRCOBI Conference, Malaga, Spain, pp. 288–302 (2016)

  • Giudice, J.S., Park, G., Kong, K., Bailey, A., Kent, R., Panzer, M.B.: Development of open-source dummy and impactor models for the assessment of American football helmet finite element models. Ann. Biomed. Eng. 47, 1–11 (2018). https://doi.org/10.1007/s10439-018-02155-3

    Google Scholar 

  • Goel, V.K., Clark, C.R., Gallaes, K., Liu, Y.K.: Moment–rotation relationships of the ligamentous occipito–atlanto–axial complex. J. Biomech. 21, 673–680 (1988). https://doi.org/10.1016/0021-9290(88)90204-7

    Article  Google Scholar 

  • Grauer, J.N., Panjabi, M.M., Cholewicki, J., Nibu, K., Dvorak, J.: Whiplash produces and S-shaped curvature of the neck with hyperextension at lower levels. Spine (Phila. Pa. 1976) 22, 2489–2494 (1997)

    Article  Google Scholar 

  • Hai-bin, C., Yang, K.H., Zheng-guo, W.: Biomechanics of whiplash injury. Chin. J. Traumatol. 12, 305–314 (2009). https://doi.org/10.3760/cma.j.issn.1008-1275.2009.05.011

    Google Scholar 

  • Hassan, M.T.Z., Meguid, S.A.: Viscoelastic multibody dynamics of whiplash. In: Proceedings of the 25th CANCAM, London, ON, Canada (2014)

  • Hassan, M.T.Z., Meguid, S.A.: Effect of seat belt and head restraint on occupant’s response during rear-end collision. Int. J. Mech. Mater. Des. 14, 231–242 (2018). https://doi.org/10.1007/s10999-017-9373-6

    Article  Google Scholar 

  • Hell, W., Langwieder, K., Walz, F., Muser, M., Kramer, M., Hartwig, E.: Consequences for seat design due to read end accident analysis, sled tests, and possible test criteria for reducing cervical spine injuries after rear end collision. In: IRCOBI Conference on the Biomechanics of Impact, pp. 243–259 (1999)

  • Himmetoglu, S., Acar, M., Bouazza-Marouf, K., Taylor, A.: A multi-body human model for rear-impact simulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 223, 623–638 (2009). https://doi.org/10.1243/09544070jauto985

    Article  Google Scholar 

  • Hitosugi, M., Tokudome, S.: Injury severity of occupants in lateral collisions in standard and small vehicles: Analysis of ITARDA’s in-depth investigation data. Int. J. Crashworthiness 16, 657–663 (2011). https://doi.org/10.1080/13588265.2011.616116

    Article  Google Scholar 

  • Hoover, J.: Dynamic analysis of whiplash, Master's Thesis, University of Toronto, Toronto (2012)

  • Hoover, J., Meguid, S.A.: Analytical viscoelastic modelling of whiplash using lumped-parameter approach. Int. J. Mech. Mater. Des. 11, 125–137 (2015). https://doi.org/10.1007/s10999-015-9306-1

    Article  Google Scholar 

  • Ivancic, P.C., Ito, S., Panjabi, M.M., Pearson, A.M., Tominaga, Y., Wang, J.-L., Gimenez, S.E.: Intervertebral neck injury criterion for simulated frontal impacts. Traffic Inj. Prev. 6, 175–184 (2005). https://doi.org/10.1080/15389580590931671

    Article  Google Scholar 

  • de Jager, M.: Mathematical Head-Neck Models for Acceleration Impacts, impacts, Ph.D. Thesis. University of Technology, Eindhoven (1996)

    Google Scholar 

  • Katagiri, M., Zhao, J., Kerrigan, J., Kent, R., Forman, J.: Comparison of whole-body kinematic behaviour of the GHBMC occupant model to PMHS in far-side sled tests. In: 2016 IRCOBI Conference Proceedings—International Research Council on Biomechanics of Injury (2016)

  • Kleinberger, M.: Anthropomorphic Test Devices for Military Scenarios. In: Franklyn, M., Lee, P.V.S. (eds.) Military Injury Biomechanics, pp. 87–102. CRC Press, Boca Raton, FL (2017)

    Google Scholar 

  • Krafft, M., Kullgren, A., Ydenius, A., Tingvall, C.: Influence of crash pulse characteristics on whiplash associated disorders in rear impacts-crash recording in real life crashes. Traffic Inj. Prev. 3, 141–149 (2002). https://doi.org/10.1080/15389580212001

    Article  Google Scholar 

  • Kullgren, A., Krafft, M., Nygren, Å., Tingvall, C.: Neck injuries in frontal impacts: influence of crash pulse characteristics on injury risk. Accid. Anal. Prev. 32, 197–205 (2000). https://doi.org/10.1016/S0001-4575(99)00096-2

    Article  Google Scholar 

  • Kuppa, S., Saunders, J., Stammen, J., Mallory, A.: Kinematically based whiplash injury criterion. In: Proceedings of 19th ESV conference, paper no. 05-0211 (2005)

  • Liu, Y.K., Krieger, K.W., Njus, G., Ueno, K., Connors, M.P., Wakano, K., Thies, D.: Cervical spine stiffness and geometry of the young human male, Air Force Aerospace Medical Research Laboratories, AFAMRL-TR-80-138 (1980)

  • Livermore Software Technology Corporation: LS-DYNA Keyword User’s Manual, Livermore, CA (2007)

  • Lowrance, E.W., Latimer, H.B.: Weights and variability of components of the human vertebral column. Anat. Rec. 159, 83–88 (1967). https://doi.org/10.1002/ar.1091590112

    Article  Google Scholar 

  • Martin, P.G., Crandall, J.R., Pilkey, W.D.: Injury trends of passenger car drivers in frontal crashes in the USA. Accid. Anal. Prev. 32, 541–557 (2000). https://doi.org/10.1016/S0001-4575(99)00076-7

    Article  Google Scholar 

  • Marzougui, D., Samaha, R.R., Cui, C., Kan, Opiela, K.S.: Extended validation of the finite element model for the 2010 Toyota Yaris Passenger Sedan (2012)

  • Meyer, F., Bourdet, N., Deck, C., Willinger, R., Raul, J.S.: Human neck finite element model development and validation against original experimental data. In: Stapp Car Crash Journal, vol. 48, pp. 177–206 (2004)

  • Mordaka, J., Meijer, R., van Rooij, L., Żmijewska, A.E.: Validation of a finite element human model for prediction of rib fractures. in: SAE Technical Paper 2007-01-1161 (2007). https://doi.org/10.4271/2007-01-1161

  • National Highway Traffic Safety Administration (NHTSA): Federal Motor Vehicle Safety Standard (FMVSS) 208 (1998)

  • National Highway Traffic Safety Administration (NHTSA): Toyota Yaris LS-DYNA model (2010)

  • National Highway Traffic Safety Adminstration - Department of Transportation: Traffic Safety Facts 2007: a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system, Washington, DC (2007)

  • National Highway Traffic Safety Adminstration - Department of Transportation: Traffic Safety Facts 2015—a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system, Washington, DC (2017)

  • Nilson, G., Svensson, M.Y., Lovsund, P., Haland, Y., Wiklund, K.: Rear-end collisions—the effect of the seat belt and the crash pulse on occupant motion. In: ESV Conference., Munchen (1994)

  • Oakley, E., Wrazen, B., Bellnier, D.A., Syed, Y., Arshad, H., Shafirstein, G.: A new finite element approach for near real-time simulation of light propagation in locally advanced head and neck tumors. Lasers Surg. Med. 47, 60–67 (2015). https://doi.org/10.1002/lsm.22313

    Article  Google Scholar 

  • Oda, T., Panjabi, M.M., Crisco, J.J., Bueff, H.U., Grob, D., Dvorak, J.: Role of tectorial membrane in the stability of the upper cervical spine. Clin. Biomech. 7, 201–207 (1992). https://doi.org/10.1016/S0268-0033(92)90002-L

    Article  Google Scholar 

  • Ordway, N.R., Seymour, R.J., Donelson, R.G., Hojnowski, L.S., Edwards, W.T.: Cervical flexion, extension, protrusion, and retraction. Spine (Phila. Pa. 1976) 24, 240–247 (1999). https://doi.org/10.1097/00007632-199902010-00008

    Article  Google Scholar 

  • Östh, J., Mendoza-Vazquez, M., Linder, A., Svensson, M.Y., Brolin, K.: The VIVA OpenHBM finite element 50th percentile female occupant model: whole body model development and kinematic validation. In: IRCOBI Conference, Antwerp, Belgium (2017)

  • Panjabi, M.M., Ito, S., Ivancic, P.C., Rubin, W.: Evaluation of the intervertebral neck injury criterion using simulated rear impacts. J. Biomech. 38, 1694–1701 (2005). https://doi.org/10.1016/j.jbiomech.2004.07.015

    Article  Google Scholar 

  • Panzer, M.B., Cronin, D.S.: C4–C5 segment finite element model development, validation, and load-sharing investigation. J. Biomech. 42, 480–490 (2009). https://doi.org/10.1016/j.jbiomech.2008.11.036

    Article  Google Scholar 

  • Park, G., Kim, T., Crandall, J.R., Arregui-Dalmases, C., Luzón Narro, B.J.: Comparison of kinematics of GHBMC to PMHS on the side impact condition. In: Proceedings on IRCOBI Conference 2013, vol. 1, pp. 368–379 (2013)

  • Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int. J. Solids Struct. 44, 760–778 (2007). https://doi.org/10.1016/j.ijsolstr.2006.05.018

    Article  MATH  Google Scholar 

  • Plaga, J.A., Albery, C., Boehmer, M., Goodyear, C., Thomas, G.: Design and development of anthropometrically correct head forms for joint strike fighter ejection seat testing, Dayton (2005)

  • Schneider, L., Robbins, D.H., Pflüg, M.A., Snyder, R.G.: Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family, Ann Arbor, MI, vol. 1 (1983)

  • Stein, D.M., O’Connor, J.V., Kufera, J.A., Ho, S.M., Dischinger, P.C., Copeland, C.E., Scalea, T.M.: Risk factors associated with pelvic fractures sustained in motor vehicle collisions involving newer vehicles. J. Trauma Inj. Infect. Crit. Care. 61, 21–31 (2006). https://doi.org/10.1097/01.ta.0000222646.46868.cb

    Article  Google Scholar 

  • Stemper, B.D., Yoganandan, N., Pintar, F.A.: Validation of a head-neck computer model for whiplash simulation. Med. Biol. Eng. Comput. 42, 333–338 (2004). https://doi.org/10.1007/BF02344708

    Article  Google Scholar 

  • Tencer, A.F., Huber, P., Mirza, S.K. (2003): A comparison of biomechanical mechanisms of whiplash injury from rear impacts. In: 47th Annual Proceedings Association for the Advancement of Automotive Medicine, Lisbon, Portugal (2003)

  • Trajkovski, A., Omerovic, S., Krasna, S., Prebil, I.: Loading rate effect on mechanical properties of cervical spine ligaments. Acta Bioeng. Biomech. 16, 13–20 (2014). https://doi.org/10.5277/abb140302

    Google Scholar 

  • Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N.: Biomechanics of breast tumor: effect of collagen and tissue density. Int. J. Mech. Mater. Des. 8, 257–267 (2012). https://doi.org/10.1007/s10999-012-9190-x

    Article  Google Scholar 

  • van Lopik, D.W., Acar, M.: Development of a multi-body computational model of human head and neck. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 221, 175–197 (2007). https://doi.org/10.1243/14644193jmbd84

    Article  Google Scholar 

  • Werne, S.: Studies in spontaneous atlas dislocation. Acta Orthop. Scand. Suppl. 23, 1–150 (1957). https://doi.org/10.3109/ort.1957.28.suppl-23.01

    Google Scholar 

  • White, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine. J.B. Lippincott Company, Philadelphia (1990)

    Google Scholar 

  • White, N.A., Danelson, K.A., Scott Gayzik, F., Stitzel, J.D.: Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact. J. Biomech. Eng. 136, 111001 (2014). https://doi.org/10.1115/1.4028133

    Article  Google Scholar 

  • Yoganandan, N., Pintar, F.A., Cusick, J.F.: Biomechanical analyses of whiplash injuries using an experimental model. Accid. Anal. Prev. 34, 663–671 (2002)

    Article  Google Scholar 

  • Zhang, L., Meng, Q.: Study on cervical spine stresses based on three-dimensional finite element method. In: 2010 International Conference on Computational and Information Sciences, pp. 420–423 (2010). https://doi.org/10.1109/iccis.2010.109

Download references

Acknowledgements

This publication was made possible by NPRP grant# (7-236-3-053) from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Population of matrices of 1 DOF model

$$ \left[ A \right] = \left[ {\begin{array}{*{20}l} {m_{{1 - {\text{n}}}} l_{1}^{2} + I_{1} } \hfill & {m_{2 - n} l_{1} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} l_{1} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ {m_{2 - n} l_{1} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & {m_{2 - n} l_{2}^{2} + I_{2} } \hfill & \cdots \hfill & {m_{n} l_{2} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {m_{n} l_{1} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill & {m_{n} l_{2} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & {m_{n} l_{n}^{2} + I_{n} } \hfill \\ \end{array} } \right] $$
$$ \left[ B \right] = \left[ {\begin{array}{*{20}l} 0 \hfill & {m_{2 - n} l_{1} l_{2} \sin \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} l_{1} l_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ { - m_{2 - n} l_{1} l_{2} \sin \left( {\theta_{1} - \theta_{2} } \right)} \hfill & 0 \hfill & \cdots \hfill & {m_{n} l_{2} l_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ { - m_{n} l_{1} l_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)} \hfill & { - m_{n} l_{2} l_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & 0 \hfill \\ \end{array} } \right] $$
$$ \left[ C \right] = \left[ {\begin{array}{*{20}l} {c_{1} + c_{2} } \hfill & { - c_{2} } \hfill & 0 \hfill & 0 \hfill \\ { - c_{2} } \hfill & \ddots \hfill & \ddots \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & {c_{n - 1} + c_{n} } \hfill & { - c_{n} } \hfill \\ 0 \hfill & 0 \hfill & { - c_{n} } \hfill & {c_{n} } \hfill \\ \end{array} } \right] $$
$$ \left[ D \right] = \left[ {\begin{array}{*{20}l} {k_{1} \left( {\phi_{1} } \right) + k_{2} \left( {\phi_{2} } \right)} \hfill & { - k_{2} \left( {\phi_{2} } \right)} \hfill & 0 \hfill & 0 \hfill \\ { - k_{2} \left( {\phi_{2} } \right)} \hfill & \ddots \hfill & \ddots \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & {k_{n - 1} \left( {\phi_{n - 1} } \right) + k_{n} \left( {\phi_{n} } \right)} \hfill & { - k_{n} \left( {\phi_{n} } \right)} \hfill \\ 0 \hfill & 0 \hfill & { - k_{n} \left( {\phi_{n} } \right)} \hfill & {k_{n} \left( {\phi_{n} } \right)} \hfill \\ \end{array} } \right] $$

\( \left\{ Q \right\} = \left\{ {\begin{array}{*{20}l} { - m_{1 - n} l_{1} \left( {a_{x} \cos \theta_{1} + a_{z} \sin \theta_{1} } \right)} \hfill \\ { - m_{2 - n} l_{2} \left( {a_{x} \cos \theta_{2} + a_{z} \sin \theta_{2} } \right)} \hfill \\ \vdots \hfill \\ { - m_{n} l_{n} \left( {a_{x} \cos \theta_{n} + a_{z} \sin \theta_{n} } \right)} \hfill \\ \end{array} } \right\} \)

$$ \left\{ {\ddot{q}} \right\} = \left\{ {\begin{array}{*{20}l} {\ddot{\theta }_{1} } \\ \vdots \\ {\ddot{\theta }_{n} } \\ \end{array} } \right\}\quad \left\{ {\dot{q}^{2} } \right\} = \left\{ {\begin{array}{*{20}l} {\dot{\theta }_{1}^{2} } \\ \vdots \\ {\dot{\theta }_{n}^{2} } \\ \end{array} } \right\}\quad \quad \quad \left\{ q \right\} = \left\{ {\begin{array}{*{20}l} {\theta_{1} - \theta_{01} } \\ \vdots \\ {\theta_{n} - \theta_{0n} } \\ \end{array} } \right\}\quad \left\{ {\begin{array}{*{20}l} {\phi_{1} } \\ \vdots \\ {\phi_{n} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\theta_{1} - \theta_{01} } \\ {\left( {\theta_{2} - \theta_{02} } \right) - \left( {\theta_{1} - \theta_{01} } \right)} \\ \vdots \\ {\left( {\theta_{n} - \theta_{0n} } \right) - \left( {\theta_{n} - \theta_{0n} } \right)} \\ \end{array} } \right\} $$
$$ m_{1 - n} = \mathop \sum \limits_{i = 1}^{n} m_{i} \quad l_{1 - n} = \mathop \sum \limits_{i = 1}^{n} l_{i} \quad n = 8\quad {\text{for}}\; 1\;{\text{DOF}} $$

1.2 Appendix 2: Matrices population of 2 DOF model

$$ \begin{aligned} \left[ A \right] & = \left[ {\begin{array}{*{20}l} {I_{1} + m_{1 - n} l_{1}^{2} } \hfill & {m_{2 - n} l_{1} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} l_{1} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ {m_{2 - n} l_{1} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & {I_{2} + m_{2 - n} l_{2}^{2} } \hfill & \cdots \hfill & {m_{n} l_{2} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {m_{n} l_{1} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill & {m_{n} l_{2} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & {I_{n} + m_{n} l_{n}^{2} } \hfill \\ 0 \hfill & {m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{2} } \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{n} } \hfill \\ { - m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{1} } \hfill & 0 \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{n} } \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ { - m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{1} } \hfill & { - m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{2} } \hfill & \cdots \hfill & 0 \hfill \\ \end{array} } \right. \\ & \quad \left. {\begin{array}{*{20}l} 0 \hfill & { - m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{1} } \hfill & \cdots \hfill & { - m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{1} } \hfill \\ {m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{2} } \hfill & 0 \hfill & \cdots \hfill & { - m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{2} } \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{n} } \hfill & {m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{n} } \hfill & \cdots \hfill & 0 \hfill \\ {m_{1 - n} } \hfill & {m_{2 - n} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ {m_{2 - n} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & {m_{2 - n} } \hfill & \cdots \hfill & {m_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {m_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill & {m_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & {m_{n} } \hfill \\ \end{array} } \right] \\ \end{aligned} $$
$$ \begin{aligned} \left[ B \right] & = \left[ {\begin{array}{*{20}l} 0 \hfill & {m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{1} l_{2} } \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{1} l_{n} } \hfill \\ { - m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)l_{1} l_{2} } \hfill & 0 \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{2} l_{n} } \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ { - m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)l_{1} l_{n} } \hfill & { - m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)l_{2} l_{n} } \hfill & \cdots \hfill & 0 \hfill \\ { - m_{1 - n} l_{1} } \hfill & { - m_{2 - n} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ { - m_{2 - n} l_{1} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & { - m_{2 - n} l_{2} } \hfill & \cdots \hfill & {m_{n} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ { - m_{n} l_{1} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill & { - m_{n} l_{2} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & {m_{n} l_{n} } \hfill \\ \end{array} } \right. \\ & \quad \left. {\begin{array}{*{20}l} {m_{1 - n} l_{1} } \hfill & {m_{2 - n} l_{1} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} l_{1} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ {m_{2 - n} l_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \hfill & {m_{2 - n} l_{2} } \hfill & \cdots \hfill & {m_{n} l_{2} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {m_{n} l_{n} \cos \left( {\theta_{1} - \theta_{n} } \right)} \hfill & {m_{n} l_{n} \cos \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & {m_{n} l_{n} } \hfill \\ 0 \hfill & {m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)} \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)} \hfill \\ { - m_{2 - n} \sin \left( {\theta_{1} - \theta_{2} } \right)} \hfill & 0 \hfill & \cdots \hfill & {m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ { - m_{n} \sin \left( {\theta_{1} - \theta_{n} } \right)} \hfill & { - m_{n} \sin \left( {\theta_{2} - \theta_{n} } \right)} \hfill & \cdots \hfill & 0 \hfill \\ \end{array} } \right] \\ \end{aligned} $$
$$ \left[ C \right] = \left[ {\begin{array}{*{20}l} {c_{r1} + c_{r2} } \hfill & { - c_{r2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - c_{r2} } \hfill & \ddots \hfill & \ddots \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & {c_{rn - 1} + c_{rn} } \hfill & { - c_{rn} } \hfill & 0 \hfill & 0 \hfill & {0\backslash } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - c_{rn} } \hfill & {c_{rn} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {c_{e1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {c_{e2} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ddots \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {c_{en} } \hfill \\ \end{array} } \right] $$
$$ \left[ D \right] = \left[ {\begin{array}{*{20}l} {k_{r1} \left( {\phi_{1} } \right) + k_{r2} \left( {s_{2} } \right)} \hfill & { - k_{r2} \left( {\phi_{2} } \right)} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - k_{r2} \left( {\phi_{2} } \right)} \hfill & \ddots \hfill & \ddots \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & {k_{rn - 1} \left( {\phi_{n - 1} } \right) + k_{rn} \left( {\phi_{n} } \right)} \hfill & { - k_{rn} \left( {\phi_{n} } \right)} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - k_{rn} \left( {\phi_{n} } \right)} \hfill & {k_{rn} \left( {\phi_{n} } \right)} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{e1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{e2} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ddots \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{en} } \hfill \\ \end{array} } \right] $$
$$ \left\{ Q \right\} = \left\{ {\begin{array}{*{20}l} { - m_{1 - n} l_{1} \left( {a_{x} \cos \theta_{1} + a_{z} \sin \theta_{1} } \right)} \hfill \\ { - m_{2 - n} l_{1} \left( {a_{x} \cos \theta_{2} + a_{z} \sin \theta_{2} } \right)} \hfill \\ \vdots \hfill \\ { - m_{n} l_{1} \left( {a_{x} \cos \theta_{n} + a_{z} \sin \theta_{n} } \right)} \hfill \\ { - m_{1 - n} \left( {a_{x} \sin \theta_{1} - a_{z} \cos \theta_{1} } \right)} \hfill \\ { - m_{2 - n} \left( {a_{x} \sin \theta_{2} - a_{z} \cos \theta_{2} } \right)} \hfill \\ \vdots \hfill \\ { - m_{n} \left( {a_{x} \sin \theta_{n} - a_{z} \cos \theta_{n} } \right)} \hfill \\ \end{array} } \right\}\quad \left\{ {\ddot{q}} \right\} = \left\{ {\begin{array}{*{20}l} {\left\{ {\ddot{\theta }_{i} } \right\}} \hfill \\ {\left\{ {\ddot{l}_{i} } \right\}} \hfill \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\ddot{\theta }_{1} } \hfill \\ {\ddot{\theta }_{2} } \hfill \\ \vdots \hfill \\ {\ddot{\theta }_{n} } \hfill \\ {\ddot{l}_{1} } \hfill \\ {\ddot{l}_{2} } \hfill \\ \vdots \hfill \\ {\ddot{l}_{n} } \hfill \\ \end{array} } \right\} $$
$$ \left\{ {\dot{q}^{2} } \right\} = \left\{ {\begin{array}{*{20}l} {\left\{ {\dot{\theta }_{i}^{2} } \right\}} \\ {\left\{ {2\dot{\theta }\dot{l}} \right\}} \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\dot{\theta }_{1}^{2} } \\ {\dot{\theta }_{2}^{2} } \\ \vdots \\ {\dot{\theta }_{n}^{2} } \\ {2\dot{\theta }_{1} \dot{l}_{1} } \\ {2\dot{\theta }_{2} \dot{l}_{2} } \\ \vdots \\ {2\dot{\theta }_{n} \dot{l}_{n} } \\ \end{array} } \right\}\quad \left\{ {\dot{q}} \right\} = \left\{ {\begin{array}{*{20}l} {\left\{ {\dot{\theta }} \right\}} \\ {\dot{l}} \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\dot{\theta }_{1} } \\ {\dot{\theta }_{2} } \\ \vdots \\ {\dot{\theta }_{n} } \\ {\dot{l}_{1} } \\ {\dot{l}_{2} } \\ \vdots \\ {\dot{l}_{n} } \\ \end{array} } \right\}\quad \left\{ q \right\} = \left\{ {\begin{array}{*{20}l} {\left\{ \theta \right\}} \\ {\left\{ l \right\}} \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\theta_{1} - \theta_{01} } \\ {\theta_{2} - \theta_{02} } \\ \vdots \\ {\theta_{n} - \theta_{0n} } \\ {l_{1} - l_{01} } \\ {l_{2} - l_{02} } \\ \vdots \\ {l_{n} - l_{0n} } \\ \end{array} } \right\} $$
$$ \left\{ {\begin{array}{*{20}l} {\phi_{1} } \\ \vdots \\ {\phi_{n} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {\theta_{1} - \theta_{01} } \\ {\left( {\theta_{2} - \theta_{02} } \right) - \left( {\theta_{1} - \theta_{01} } \right)} \\ \vdots \\ {\left( {\theta_{n} - \theta_{0n} } \right) - \left( {\theta_{n} - \theta_{0n} } \right)} \\ \end{array} } \right\} $$
$$ m_{i - n} = \mathop \sum \limits_{i}^{n} m_{j} \quad l_{i - n} = \mathop \sum \limits_{i}^{n} l_{j} \quad n = 16\quad {\text{for}}\; 2\;{\text{DOF}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.T.Z., Shi, M.G. & Meguid, S.A. Nonlinear multibody dynamics and finite element modeling of occupant response: part I—rear vehicle collision. Int J Mech Mater Des 15, 3–21 (2019). https://doi.org/10.1007/s10999-019-09449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09449-x

Keywords

Navigation