Skip to main content
Log in

Saddlepoint approximations to the distribution of the total distance of the multivariate isotropic and von Mises–Fisher random walks

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

This article considers the random walk over Rp, with p ≥ 2, where the directions taken by the individual steps follow either the isotropic or the vonMises–Fisher distributions. Saddlepoint approximations to the density and to upper tail probabilities of the total distance covered by the random walk, i.e., of the length of the resultant, are derived. The saddlepoint approximations are onedimensional and simple to compute, even though the initial problem is p-dimensional. Numerical illustrations of the high accuracy of the proposed approximations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Courier Dover Publ., New York, 1972).

    MATH  Google Scholar 

  2. D. E. Amos, “Computation of Modified Bessel Functions and Their Ratios”, Math. Comput. 28, 239–251 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the Unit Hypersphere Using von Mises–Fisher Distributions”, J. of Machine Learning Research 6, 1345–1382 (2005).

    MathSciNet  MATH  Google Scholar 

  4. R. Barakat, “Isotropic Random Flights”, J. Phys. A:Mathematical, Nuclear and General 6, 796–804 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  5. M.N. Barber and B. W. Ninham, Random and Restricted Walks, Theory and Applications (Gordon and Breach, 1970).

    MATH  Google Scholar 

  6. O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics, (Chapman & Hall, 1989).

    Book  MATH  Google Scholar 

  7. Y.-H. Chen, D. Wei, G. Newstadt, M. De Graef, J. Simmons, and A. Hero, “Parameter Estimation in Spherical Symmetry Groups”, IEEE Signal Processing Lett. 22, 1152–1155 (2015).

    Article  Google Scholar 

  8. H. E. Daniels, “Saddlepoint approximations in statistics”, Ann. Math. Statist. 25, 631–650 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. E. Daniels and G. A. Young, “Saddlepoint Approximation for the Studentized Mean, with an Application to the Bootstrap”, Biometrika 78, 169–179 (1991).

    Article  MathSciNet  Google Scholar 

  10. N. G. De Bruijn, Asymptotic Methods in Analysis (Dover, 1982).

    Google Scholar 

  11. A. Feuerverger, “On the Empirical Saddlepoint Approximation”, Biometrika 76, 457–464 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Field, “Small Sample Asymptotic Expansions forMultivariateM-Estimates”, Ann. Statist. 10, 672–689 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. A. Field and E. Ronchetti, Small Sample Asymptotics (Inst. Math. Statist, 1990), Vol.13.

  14. C. A. Field and M. A. Tingley, “Small Sample Asymptotics: Applications in Robustness”, in Handbook of Statistics (Elsevier, 1997), Vol. 15, Ch. 18, pp. 513–536.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, 1969).

    Google Scholar 

  16. R. Gatto, “Multivariate Saddlepoint Test for the Wrapped Normal Model”, J. Statist. Comput. and Simul. 65, 271–285 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Gatto, “Large Deviations Approximations to Distributions of the Total Distance of Compound Random Walks with von Mises Directions”, Methodology and Computing in Applied Probability (2017) (in press).

    Google Scholar 

  18. R. Gatto and S. R. Jammalamadaka, “A Conditional Saddlepoint Approximation for Testing Problems”, J. Amer. Statist. Assoc. 94, 533–541 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Gatto and S. R. Jammalamadaka, “Inference for Wrapped Symmetric α-Stable Circular Models”, Sankhyā, A:Math. Statist. and Probab. 65 (2), 333–355 (2003).

    MathSciNet  MATH  Google Scholar 

  20. R. Gatto and M. Mayer, “Saddlepoint Approximations for SomeModels of Circular Data”, Statist. Methodology 2, 233–248 (2005).

    Article  MATH  Google Scholar 

  21. K. Hornik and B. Grün, “OnMaximumLikelihood Estimation of the Concentration Parameter of vonMises–Fisher Distributions”, Comput. Statist. 29, 945–957 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Jeganathan, R. L. Paige, and A. A. Trindade, “Saddlepoint-Based Bootstrap Inference for the Spatial Dependence Parameter in the Lattice Process”, Spatial Statist. 12, 1–14 (2015).

    Article  MathSciNet  Google Scholar 

  23. J. L. Jensen, Saddlepoint Approximations (Oxford University Press, 1995).

    MATH  Google Scholar 

  24. J. T. Kent, K. V. Mardia, and J. S. Rao, “A Characterization of Uniform Distribution on the Circle”, Ann. Statist. 7, 882–889 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. E. Kolassa, Series Approximation Methods in Statistics, in Lecture Notes in Statistics, 3rd ed. (Springer, 2006), Vol.88.

  26. A. Kume and A. T. A. Wood, “Saddlepoint Approximations for the Bingham and Fisher–Bingham Normalizing Constants”, Biometrika 92, 465–476 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Lugannani and S. Rice, “Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables”, Advances in Appl. Probab. 12, 475–490 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Ma and E. Ronchetti, “Saddlepoint Test in Measurement Error Models”, J. Amer. Statist. Assoc. 106, 147–156 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. V. Mardia and P. E. Jupp, Directional Statistics (Wiley, New York, 2000).

    MATH  Google Scholar 

  30. K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis (Academic Press, 1979).

    MATH  Google Scholar 

  31. M. Masoliver, J. M. Porrá, and G.H. Weiss, “Some Two and Three-Dimensional PersistentRandom Walks”, Phys. A: Statistical Mechanics and Its Applications, 469–482 (1993).

    Google Scholar 

  32. E. Orsingher and A. De Gregorio, “Random Flights in Higher Spaces”, J. Theoret. Probab. 20, 769–806 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Reid, “SaddlepointMethods and Statistical Inference”, Statist. Sci. 3, 213–238 (1988).

    Article  MathSciNet  Google Scholar 

  34. J. Robinson, “Saddlepoint Approximations for Permutation Tests and Confidence Intervals”, J. Royal Statist. B 44, 91–101 (1982).

    MathSciNet  MATH  Google Scholar 

  35. J. Robinson, E. Ronchetti, and G. A. Young, “Saddlepoint Approximations and Tests Based on Multivariate M-Estimates”, Ann. Statist. 31, 1154–1169 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Ronchetti and A. H. Welsh, “Empirical Saddlepoint Approximations for Multivariate M-Estimators”, J. Royal Statist. Soc., Ser. B (Statist. Methodology) 56, 313–326 (1994).

    MathSciNet  MATH  Google Scholar 

  37. R. Srinivisan and S. Parthasarathy, Some Statistical Applications in X-ray Crystallography (Pergamon Press, 1976).

    Google Scholar 

  38. W. Stadje, “Exact Probability Distribution for Non-Correlated Random Walk Models”, J. Statist. Phys. 56, 415–435 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  39. N. M. Temme, “The Uniform Asymptotic Expansion of a Class of Integrals Related to Cumulative Distribution Functions”, SIAM J. Math. Anal. 13, 239–253 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Wang, “General Saddlepoint Approximations in the Bootstrap”, Statist & Probab. Lett. 13, 61–66 (1992).

    Article  MathSciNet  Google Scholar 

  41. S. Wang, “Saddlepoint Expansions in Finite Population Problems”, Biometrika 80, 583–590 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Wang, “One-Step Saddlepoint Approximations for Quantiles”, Comput. Statist. and Data Anal. 20, 65–74 (1995).

    Article  MATH  Google Scholar 

  43. G. H. Weiss and J. E. Kiefer, “The Pearson RandomWalk with Unequal Step Sizes”, J. Phys. A: Math. and General 16, 489–495 (1983).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gatto.

Additional information

orcid.org/0000-0001-8374-6964

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatto, R. Saddlepoint approximations to the distribution of the total distance of the multivariate isotropic and von Mises–Fisher random walks. Math. Meth. Stat. 26, 20–36 (2017). https://doi.org/10.3103/S1066530717010021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530717010021

Keywords

2010 Mathematics Subject Classification

Navigation