Skip to main content
Log in

Sparse solutions of optimal control via Newton method for under-determined systems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We focus on finding sparse and least-\(\ell _1\)-norm solutions for unconstrained nonlinear optimal control problems. Such optimization problems are non-convex and non-smooth, nevertheless recent versions of Newton method for under-determined equations can be applied successively for such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Athans, M.: Minimum-fuel feedback control systems: second-order case. IEEE Trans. Appl. Ind. 82, 8–17 (1963)

    Article  Google Scholar 

  2. Balakrishnan, A.V., Neustadt, L.W. (eds.): Computing Methods in Optimization Problems. Academic Press, New York (1964)

    Google Scholar 

  3. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  4. Ben-Israel, A.: A Newton–Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966)

    Article  MathSciNet  Google Scholar 

  5. Burdakov, O.P.: Some globally convergent modifications of Newton’s method for solving systems of nonlinear equations. Soviet Math. Dokl. 22(2), 376–379 (1980)

    MATH  Google Scholar 

  6. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  7. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  8. Evtushenko, Y.G.: Numerical Optimization Techniques. Springer, New York (1985)

    Book  Google Scholar 

  9. Hager, W.W.: Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79(3), 427–462 (1993)

    Article  MathSciNet  Google Scholar 

  10. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  11. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  12. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. John Wiley, New York (1967)

    MATH  Google Scholar 

  13. Leitman, G. (ed.): Optimization Techniques. Academic Press, New York (1962)

    Google Scholar 

  14. Leondes, C.T. (ed.): Control and Dynamic Systems. Advances in Theory and Application, vol. 16. Elsevier, Amsterdam (1980)

    Google Scholar 

  15. Levin, Y., Ben-Israel, A.: A Newton method for systems of \(m\) equations in \(n\) variables. Nonlinear Anal. 47, 1961–1971 (2001)

    Article  MathSciNet  Google Scholar 

  16. Nesterov, Y.: Modified Gauss–Newton scheme with worst case guarantees for global performance. Optim. Methods Softw. 22(3), 469–483 (2007)

    Article  MathSciNet  Google Scholar 

  17. Nagahara, M., Quevedo, D.E., Nešić, D.: Maximum hands-off control: a paradigm of control effort minimization. IEEE Trans. Autom. Control. 61(3), 735–747 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  19. Pan, B., Ma, Y., Yan, R.: Newton-type methods in computational guidance. J. Guid. Control Dyn. 42(2), 377–383 (2018)

    Article  Google Scholar 

  20. Polak, E.: Computational Methods in Optimization: A Unified Approach. Academic Press, London (1971)

    Google Scholar 

  21. Polyak, B.T.: Gradient methods for solving equations and inequalities. USSR Comput. Math. Math. Phys. 4(6), 17–32 (1964)

    Article  MathSciNet  Google Scholar 

  22. Polyak, B.T.: Newton–Kantorovich method and its global convergence. J. Math. Sci. 133(4), 1513–1523 (2006)

    Article  MathSciNet  Google Scholar 

  23. Polyak, B., Tremba A.: Solving underdetermined nonlinear equations by Newton-like method. Optim. Methods Softw. (2018). arXiv:1703.07810

  24. Polyak, B., Tremba A.: Newton method with adaptive step-size for under-determined systems of equations. In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7, pp. 475–480 (2017)

  25. Rao, C.V.: Sparsity of linear discrete-time optimal control problems with \(l_1\) objectives. IEEE Trans. Autom. Control. 63(2), 513–517 (2018)

    Article  Google Scholar 

  26. Tabak, D., Kuo, B.C.: Optimal Control by Mathematical Programming. Prentice-Hall, Upper Saddle River (1971)

    Google Scholar 

  27. Walker, H.F.: Newton-like methods for underdetermined systems. In: Allgower, E.L., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lecture Notes in Applied Mathematics, vol. 26, pp. 679–699. AMS, Providence (1990)

    Google Scholar 

  28. Yamamoto, T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124, 1–23 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation, Project 16-11-10015. The authors thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Tremba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Russian Science Foundation (Project 16-11-10015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B., Tremba, A. Sparse solutions of optimal control via Newton method for under-determined systems. J Glob Optim 76, 613–623 (2020). https://doi.org/10.1007/s10898-019-00784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00784-z

Keywords

Navigation