Skip to main content
Log in

Nonlinear Rayleigh–Taylor instability with horizontal magnetic field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this research, the height, curvature and velocity of the bubble tip in Rayleigh–Taylor instability at arbitrary Atwood number with horizontal magnetic field are investigated. To support the earlier simulation and experimental results, the vorticity generation inside the bubble is introduced. It is found that, in early nonlinear stage, the temporal evolution of the bubble tip parameters depends essentially on the strength and initial perturbation of the magnetic field, although the asymptotic nature coincides with the nonmagnetic case. The model proposed here agrees with the previous linear, nonlinear and simulation observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Zhou Phys. Rep. 720–722 1 (2017)

    ADS  Google Scholar 

  2. Y Zhou Phys. Rep. 723–725 1 (2017)

    ADS  Google Scholar 

  3. R Banerjee, L Mandal, M Khan and M R Gupta Indian J. Phys. 87 929 (2013)

    Article  ADS  Google Scholar 

  4. M R Gupta, R Banerjee, L Mandal, R Bhar, H C Pant, M K Srivastava and M Khan Indian J. Phys. 86 471 (2012)

    Article  ADS  Google Scholar 

  5. V P Goncharov and V I Pavlov Phys. Plasmas 23 082117 (2016).

    Article  ADS  Google Scholar 

  6. M R Gupta, L Mandal, S Roy and M Khan Phys. Plasmas 17 012306 (2010)

    Article  ADS  Google Scholar 

  7. B Srinivasan and X-Z Tang Phys. Plasmas 20 056307 (2013)

  8. N C Swisher, C C Kuranz, D Arnett, O Hurricane, B A Remington, H F Robey and S I Abarzhi Phys. Plasmas 22 102707 (2015)

    Article  ADS  Google Scholar 

  9. S Chandrasekhar (New York: Dover) (1961)

  10. L F Wang, H Y Guo, J F Wu, W H Ye, J Liu, W Y Zhang and X T He Phys. Plasmas 21 122710 (2014)

  11. R Yan, R Betti, J Sanz, H Aluie, B Liu and A Frank Phys. Plasmas 23 022701 (2016)

    Article  ADS  Google Scholar 

  12. D Layzer Astrophys. J.122 1 (1955)

  13. V N Goncharov Phys. Rev. Lett.88 134502 (2002)

    Article  ADS  Google Scholar 

  14. P Ramaprabhu, G Dimonte, Y-N Young, A C Calder and B Fryxell Phys. Rev. E 74 066308 (2006)

  15. R Betti and J Sanz Phys. Rev. Lett.97 205002 (2006)

    Article  ADS  Google Scholar 

  16. R Banerjee, L Mandal, S Roy, M Khan and M R Gupta Phys. Plasmas 18 022109 (2011)

    Article  ADS  Google Scholar 

  17. B Srinivasan and X-Z Tangn Phys. Plasmas 19 082703 (2012)

  18. Y B Sun and A R Piriz Phys. Plasmas 21 072708 (2014)

    Article  ADS  Google Scholar 

  19. J D Pecover and J P Chittenden Phys. Plasmas 22 102701 (2015)

    Article  ADS  Google Scholar 

  20. A G Rousskikh, A S Zhigalin, V I Oreshkin, V Frolova, A L Velikovich, G Y Yushkov and R B Baksht Phys. Plasmas23 063502 (2016)

    Article  Google Scholar 

  21. R Banerjee, L Mandal, M Khan and M R Gupta Phys. Plasmas19 122105 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R. Nonlinear Rayleigh–Taylor instability with horizontal magnetic field. Indian J Phys 94, 927–933 (2020). https://doi.org/10.1007/s12648-019-01521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01521-8

Keywords

PACS Nos.

Navigation