Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Unravelling the most diverse lance lacewing genus from the New World, Isostenosmylus Krüger (Neuroptera: Osmylidae)

Caleb Califre Martins A F , Adrian Ardila-Camacho B , Renato Jose Pires Machado C , Oliver S. Flint Jr D and Lionel A. Stange E
+ Author Affiliations
- Author Affiliations

A Laboratório de Morfologia e Evolução de Díptera – FFCLRP, Universidade de São Paulo, Ribeirão Preto, Av. dos Bandeirantes 3900, 14040-901, São Paulo, Brazil.

B Instituto de Biología-Universidad Nacional Autónoma de México, Ciudad Universitaria, Zona Deportiva S/N, C.U., 04510, Mexico City, Mexico.

C Departamento de Zoologia, Universidade Federal do Paraná, Jardim das Américas, 82590-300, Curitiba, Brazil.

D Deceased (in memoriam). Formerly of Department of Entomology, National Museum of Natural History, Smithsonian Institution, 7th Street 901, 20001-3719, Washington DC, USA.

E Florida State Collection of Arthropods, PO Box 147100, Gainesville, Florida 32614-7100, USA.

F Corresponding author. Email: calebcalifre@gmail.com

Invertebrate Systematics 33(6) 849-891 https://doi.org/10.1071/IS18079
Submitted: 8 November 2018  Accepted: 6 June 2019   Published: 16 December 2019

Abstract

The genus Isostenosmylus Krüger, 1913 (Neuroptera: Osmylidae) is the most species-rich genus of lance lacewings in the Neotropical region. Seven species are newly described here (Isostenosmylus angustipennis, sp. nov., Isostenosmylus apaapensis sp. nov., Isostenosmylus barbatus, sp. nov., Isostenosmylus inca, sp. nov., Isostenosmylus jaguar, sp. nov., Isostenosmylus penai, sp. nov., Isostenosmylus triangulatus, sp. nov.). A neotype of Oedosmylus morenoi Navás, 1928 is proposed, the male of Isostenosmylus irroratus Ardila-Camacho et al., 2016 is newly described, and identification keys to males and females of Isostenosmylus species are provided. A morphological phylogeny and biogeographical analysis of the genus are also presented. Isostenosmylus is recovered as a monophyletic genus and species are divided in two main clades (named here as ‘bifurcatus’ and ‘pulverulentus’ clades); the greatest diversity of this genus is located in the Andean mountain range, where new studies should be focused on.

http://zoobank.org/urn:lsid:zoobank.org:pub:7AA1CED6-D30D-4DE5-A45A-86C2F038B915

Additional keywords: Andes, biodiversity, biogeography, systematics, taxonomy.


References

Adams, P. A. (1969). A new genus and species of Osmylidae (Neuroptera) from Chile and Argentina, with a discussion of planipennian genitalic homologies. Postilla 141, 1–11.
A new genus and species of Osmylidae (Neuroptera) from Chile and Argentina, with a discussion of planipennian genitalic homologies.Crossref | GoogleScholarGoogle Scholar |

Allmendinger, R. W., Jordan, T. E., Kay, S. M., and Isacs, B. L. (1997). The evolution of the Altiplano–Puna Plateu of the central Andes. Annual Review of Earth and Planetary Sciences 25, 139–174.
The evolution of the Altiplano–Puna Plateu of the central Andes.Crossref | GoogleScholarGoogle Scholar |

Ardila-Camacho, A., and Noriega, J. A. (2014). First record of Osmylidae (Neuroptera) from Colombia and description of two new species of Isostenosmylus Krüger, 1913. Zootaxa 3826, 315–328.
First record of Osmylidae (Neuroptera) from Colombia and description of two new species of Isostenosmylus Krüger, 1913.Crossref | GoogleScholarGoogle Scholar | 24990049PubMed |

Breitkreuz, L. C. W., Winterton, S. L., and Engel, M. S. (2017). Wing tracheation in Chrysopidae and other Neuropterida (Insecta): a resolution of the confusion about vein fusion. American Museum Novitates 3890, 1–44.
Wing tracheation in Chrysopidae and other Neuropterida (Insecta): a resolution of the confusion about vein fusion.Crossref | GoogleScholarGoogle Scholar |

Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795–803.
The limits of amino acid sequence data in angiosperm phylogenetic reconstruction.Crossref | GoogleScholarGoogle Scholar | 28563878PubMed |

Bremer, K. (1994). Branch support and tree stability. Cladistics 10, 295–304.
Branch support and tree stability.Crossref | GoogleScholarGoogle Scholar |

Gerstaecker, C. E. A. (1893). Ueber neue und weniger gekannte Neuropteren aus der familie Megaloptera Burm. Mitt[h]eilungen aus dem Naturwissenschaftlichen Verein für Neu-Vorpommern und Rugen 25, 93–173.

Goloboff, P. A. (1993). Estimating character weights during tree search. Cladistics 9, 83–91.
Estimating character weights during tree search.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Carpenter, J. M., Arias, S. J., and Esquivel, D. R. M. (2008). Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24, 758–773.
Weighting against homoplasy improves phylogenetic analysis of morphological data sets.Crossref | GoogleScholarGoogle Scholar |

Hazzi, N. A., Moreno, J. C., Ortíz-Movliav, C., and Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America 115, 7985–7990.
Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes.Crossref | GoogleScholarGoogle Scholar | 30018064PubMed |

Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A. (2010). Amazonian through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931.
Amazonian through time: Andean uplift, climate change, landscape evolution, and biodiversity.Crossref | GoogleScholarGoogle Scholar | 21071659PubMed |

Kimmins, D. E. (1940). A revision of the osmylid subfamilies Stenosmylinae and Kalosmylinae (Neuroptera). Novitates Zoologicae 42, 165–201.

Krüger, L. (1913). Osmylidae. Beiträge zu einer Monographie der Neuropteren: Familie der Osmyliden. II. Charakteristik der Familie, Unterfamilien und Gattungen auf Grund des Geäders. Stettiner Entomologische Zeitung 74, 3–123.

Löwenberg-Neto, P. (2014). Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa 3802, 300.
Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation.Crossref | GoogleScholarGoogle Scholar |

Martins, C.C., Ardila-Camacho, A., and Aspöck, U. (2016). Neotropical osmylids (Neuroptera, Osmylidae): three new species of Isostenosmylus Krüger, 1913, new distributional records, redescriptions, checklist and key for the Neotropical species. Zootaxa 4149, 1–66.
Neotropical osmylids (Neuroptera, Osmylidae): three new species of Isostenosmylus Krüger, 1913, new distributional records, redescriptions, checklist and key for the Neotropical species.Crossref | GoogleScholarGoogle Scholar | 27515642PubMed |

Martins, C.C., Ardila-Camacho, A., and Courtney, G.W. (2018). Neotropical Osmylidae larvae (Insecta, Neuroptera): description of habitats and morphology. Aquatic Insects 39, 181–207.
Neotropical Osmylidae larvae (Insecta, Neuroptera): description of habitats and morphology.Crossref | GoogleScholarGoogle Scholar |

Montgomery, D. R., Balco, G., and Willett, S. D. (2001). Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582.
Climate, tectonics, and the morphology of the Andes.Crossref | GoogleScholarGoogle Scholar |

Morrone, J. J. (2014). Biogeographical regionalization of the Neotropical region. Zootaxa 3782, 1–110.
Biogeographical regionalization of the Neotropical region.Crossref | GoogleScholarGoogle Scholar | 24871951PubMed |

Navás, L. (1928). Insectos del Museo de Hamburgo. Primera [I] serie. Boletín de la Sociedad Entomologica de España 11, 121–138.

New, T. R. (1986). A new Australian genus of Stenosmylinae (Neuroptera: Osmylidae). Systematic Entomology 11, 447–452.
A new Australian genus of Stenosmylinae (Neuroptera: Osmylidae).Crossref | GoogleScholarGoogle Scholar |

Nixon, K. C. (2002). ‘WinClada ver. 1.00.08.’ Available at http://taxonomy.zoology.gla.ac.uk/rod [Accessed May 2018.]

Nixon, K. C., and Carpenter, J. M. (1993). On outgroups. Cladistics 9, 413–426.
On outgroups.Crossref | GoogleScholarGoogle Scholar |

Oswald, J. D. (2018). ‘Neuropterida Species of the World. Version 6.0.’ Available at http://lacewing.tamu.edu/SpeciesCatalog/Main [Accessed September 2018].

Penny, N. (1977). Lista de Megaloptera, Neuropteras e Raphidioptera do México, América Central, Ilhas Caraíbas e América do Sul. Acta Amazonica 7, 5–161.
Lista de Megaloptera, Neuropteras e Raphidioptera do México, América Central, Ilhas Caraíbas e América do Sul.Crossref | GoogleScholarGoogle Scholar |

Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., Cassemiro, F. A. S., Rahbek, C., and Colwell, R. K. (2018). Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, .
Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves.Crossref | GoogleScholarGoogle Scholar | 30026200PubMed |

Ronquist, F. (1997). Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Winterton, S. L., Zhao, J., Garzón-Orduña, I. J., Wang, Y.-j., and Liu, Z.-q. (2017). The phylogeny of lance lacewings (Neuroptera: Osmylidae). Systematic Entomology 42, 555–574.
The phylogeny of lance lacewings (Neuroptera: Osmylidae).Crossref | GoogleScholarGoogle Scholar |

Winterton, S. L., Lemmon, A. R., Gillung, J. P., Garzon, I. J., Badano, D., Bakkes, D. K., Breitkreuz, L. C. V., Engel, M. S., Lemmon, E. M., Liu, X.-y., Machado, R. J. P., Skevington, J. H., and Oswald, J. D. (2018). Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Systematic Entomology 43, 330–354.
Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera).Crossref | GoogleScholarGoogle Scholar |

Winterton, S. L., Martins, C. C., Makarkin, V., Ardila-Camacho, A., and Wang, Y. (2019). Lance lacewings of the world (Neuroptera: Archeosmylidae, Osmylidae & Saucrosmylidae): a review of living and fossil genera. Zootaxa 4581, 1–99.
Lance lacewings of the world (Neuroptera: Archeosmylidae, Osmylidae & Saucrosmylidae): a review of living and fossil genera.Crossref | GoogleScholarGoogle Scholar |

Yu, Y., Harris, A. J., Blair, C., and He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46–49.
RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography.Crossref | GoogleScholarGoogle Scholar | 25819445PubMed |