Skip to main content
Log in

A Fourier Analysis Approach to Elliptic Equations with Critical Potentials and Nonlinear Derivative Terms

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study nonhomogeneous elliptic problems considering a general linear elliptic operator with singular critical potentials and nonlinearities depending on multiplier operators that can be derivatives (even fractional) and singular integral operators. The general elliptic operator can contain derivatives of high-order and fractional type like polyharmonic operators and fractional Laplacian. We obtain results about existence and qualitative properties in a space whose norm is based on the Fourier transform. Our approach is of non-variational type and consists in a contraction argument in a critical space for the studied elliptic PDEs. Examples of applications are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, 2007.

  2. Alarcón S., García-Melián J., Quaas A.: Keller-Osserman type conditions for some elliptic problems with gradient terms. J. Differential Equations 255(2), 886–914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci V., Fortunato D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis H., Nirenberg L.: Louis Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézis H., Nirenberg L.: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(2), 225–326 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Biler P., Cannone M., Guerra I. A., Karch G.: Global regular and singular solutions for a model of gravitating particles. Math. Ann. 330(4), 693–708 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabré X., Tan J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math., 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L., Jin T., Sire Y., Xiong J.: Local analysis of solutions of fractional semilinear elliptic equations with isolated singularities. Arch. Ration. Mech. Anal. 213(1), 245–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cannone M., Karch G.: Smooth or singular solutions to the Navier-Stokes system. J. Differential Equations 197(2), 247–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo J. A., Ferreira L. C. F.: Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151(2), 111–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro A., Córdoba D.: Global existence, singularities and ill-posedness for a nonlocal flux. Adv. Math. 219(6), 1916–1936 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae D., Constantin P., Wu J.: Dissipative models generalizing the 2D Navier–Stokes and the surface quasi-geostrophic equations. Indiana Univ. Math. J. 61(5), 1997–2018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen H., Felmer P., Quaas A.: Large solutions to elliptic equations involving fractional Laplacian. Ann. Inst. H. Poincar Anal. Non Linaire 32(6), 1199–1228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen H., Véron L.: Semilinear fractional elliptic equations involving measures. J. Differential Equations 257(5), 1457–1486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen H., Véron L.: Semilinear fractional elliptic equations with gradient nonlinearity involving measures. J. Funct. Anal. 266(8), 5467–5492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colin M., Ohta M.: Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 753–764 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Córdoba A., Córdoba D., Fontelos M. A.: Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. 162(3), 1377–1389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Du, Singular solutions of semilinear elliptic equations with fractional Laplacian in entire space, Commun. Contemp. Math. 18 (1) (2016), 1550024, 8 pp.

  19. Fall M. M., Felli V.: Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Comm. Partial Differential Equations 39(2), 354–397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Felli V., Marchini E. M., Terracini S.: On Schrödinger operators with multisingular inverse-square anisotropic potentials. Indiana Univ. Math. J. 58, 617–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferreira L. C. F., Montenegro M.: A Fourier approach for nonlinear equations with singular data. Israel Journal of Mathematics 193, 83–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreira L. C. F., Mesquita C. A. A. S.: Existence and symmetries for elliptic equations with multipolar potentials and polyharmonic operators. Indiana University Mathematics Journal 62, 1955–1982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. C. F. Ferreira, C. A. A. S. Mesquita, An approach without using Hardy inequality for the linear heat equation with singular potential, Commun. Contemp. Math. 17 (5) (2015), 1550041, 16 pp.

  24. Fila M., Quittner P.: Radial positive solutions for a semilinear elliptic equation with a gradient term. Adv. Math. Sci. Appl. 2(1), 39–45 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Huang S., Li W.-T., Tian Q., Mu C.: Large solution to nonlinear elliptic equation with nonlinear gradient terms. J. Differential Equations 251, 3297–3328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karch G., Schonbek M. E.: On zero mass solutions of viscous conservation law. Communications in Partial Differential Equations 27(9-10), 2071–2100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/1970), 609–623.

  28. Lasry J. M., Lions P. L.: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 283, 583–630 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Lieb, M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001.

  31. Lieb E. H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miao C., Yuan B.: Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Math. Nachr. 280(1-2), 171–186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nagle K., Pothoven K., Singkofer K.: Nonlinear elliptic equations at resonance where the nonlinearity depends essentially on the derivatives. J. Differential Equations 38(2), 210–225 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ohta M.: Instability of solitary waves for nonlinear Schr¨odinger equations of derivative type. SUT J. Math. 50(2), 399–415 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Pohozaev S. I.: The Dirichlet problem for the equation \({\Delta u = u^2}\). Dokl. Akad. Nauk SSSR 134, 769–772 (1960)

    Google Scholar 

  36. A. Porretta, S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl. 85 (2006), 465–492.

  37. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986.

  38. Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Souplet P., Tayachi S., Weissler F. B.: Exact Self-Similar Blow-up of Solutions of a Semilinear Parabolic Equation with a Nonlinear Gradient Term. Indiana Univ. Math. J. 45, 655–682 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tan J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differential Equations, 42(1-2), 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Temam, Navier-Stokes equations. Theory and numerical analysis, 3nd ed., Studies in Mathematics and its Applications 2, North-Holland Publishing Co., Amsterdam, 1984.

  42. M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications 24, New York, Birkhauser, 1996.

  43. Xue H., Shao X.: Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Anal. 71(7-8), 3113–3118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang Z.: Boundary blow-up elliptic problems with nonlinear gradient terms and singular weights. Proceedings of the Royal Society of Edinburgh 138A, 1403–1424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang Z.: The asymptotic behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms. Nonlinear Analysis 62, 1137–1148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C.F. Ferreira.

Additional information

L.C.F. Ferreira was supported by FAPESP-SP and CNPQ, Brazil. (corresponding author).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.C., Castañeda-Centurión, N.F. A Fourier Analysis Approach to Elliptic Equations with Critical Potentials and Nonlinear Derivative Terms. Milan J. Math. 85, 187–213 (2017). https://doi.org/10.1007/s00032-017-0269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-017-0269-6

Mathematics Subject Classification (2010)

Keywords

Navigation