Skip to main content

Advertisement

Log in

Characterization of clear cell renal cell carcinoma and other renal tumors: evaluation of dual-energy CT using material-specific iodine and fat imaging

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to assess material-specific iodine and fat images for diagnosis of clear cell renal cell carcinoma (cc-RCC) compared to papillary RCC (p-RCC) and other renal masses.

Materials and methods

With IRB approval, we identified histologically confirmed solid renal masses that underwent rapid-kVp-switch DECT between 2016 and 2018: 25 cc-RCC (7 low grade versus 18 high grade), 11 p-RCC, and 6 other tumors (2 clear cell papillary RCC, 2 chromophobe RCC, 1 oncocytoma, 1 renal angiomyomatous tumor). A blinded radiologist measured iodine and fat concentration on material-specific iodine–water and fat–water basis pair images. Comparisons were performed between groups using univariate analysis and diagnostic accuracy calculated by ROC.

Results

Iodine concentration was higher in cc-RCC (6.14 ± 1.79 mg/mL) compared to p-RCC (1.40 ± 0.54 mg/mL, p < 0.001), but not compared to other tumors (5.0 ± 2.2 mg/mL, p = 0.370). Intratumoral fat was seen in 36.0% (9/25) cc-RCC (309.6 ± 234.3 mg/mL [71.1–762.3 ng/mL]), 9.1% (1/11) papillary RCC (97.11 mg/mL), and no other tumors (p = 0.036). Iodine concentration ≥ 3.99 mg/mL achieved AUC and sensitivity/specificity of 0.88 (CI 0.76–1.00) and 92.31%/82.40% to diagnose cc-RCC. To diagnose p-RCC, iodine concentration ≤ 2.5 mg/mL achieved AUC and sensitivity/specificity of 0.99 (0.98–1.00) and 100%/100%. The presence of intratumoral fat had AUC 0.64 (CI 0.53–0.75) and sensitivity/specificity of 34.6%/93.8% to diagnose cc-RCC. A logistic regression model combining iodine concentration and presence of fat increased AUC to 0.91 (CI 0.81–1.0) with sensitivity/specificity of 80.8%/93.8% to diagnose cc-RCC.

Conclusion

Iodine concentration values are highly accurate to differentiate clear cell RCC from papillary RCC; however, they overlap with other tumors. Fat-specific images may improve differentiation of clear cell RCC from other avidly enhancing tumors.

Key Points

• Clear cell renal cell carcinoma (RCC) has significantly higher iodine concentration than papillary RCC, but there is an overlap in values comparing clear cell RCC to other renal tumors.

• Iodine concentration ≤ 2.5 mg/mL is highly accurate to differentiate papillary RCC from clear cell RCC and other renal tumors.

• The presence of microscopic fat on material-specific fat images was specific for clear cell RCC, helping to differentiate clear cell RCC from other avidly enhancing renal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Active surveillance

ASiR:

Adaptive statistical iterative reconstruction

AUC:

Area under curve

cc-RCC:

Clear cell renal cell carcinoma

CM phase:

Corticomedullary phase

CS-MRI:

Chemical shift MRI

CT:

Computed tomography

DECT:

Dual-energy computed tomography

GU:

Genitourinary

HU:

Hounsfield unit

ISUP:

International Society of Urogenital Pathology

kVp:

Kilovoltage peak

MRI:

Magnetic resonance imaging

NECT:

Nonenhanced contrast tomography

PACS:

Picture Archiving and Communication System

PPV:

Positive predictive value

RAT:

Renal angiomyomatous tumor

RCC:

Renal cell carcinoma

ROC:

Receiver operator characteristic

ROI:

Region of interest

References

  1. Ljungberg B, Bensalah K, Canfield S et al (2015) EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 67:913–924

    Article  PubMed  Google Scholar 

  2. Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MAS (2004) The natural history of incidentally detected small renal masses. Cancer 100:738–745

    Article  PubMed  Google Scholar 

  3. Herts BR, Silverman SG, Hindman NM et al (2018) Management of the incidental renal mass on CT: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol 15:264–273

    Article  PubMed  Google Scholar 

  4. Woo S, Cho JY (2015) Imaging findings of common benign renal tumors in the era of small renal masses: differential diagnosis from small renal cell carcinoma: current status and future perspectives. Korean J Radiol 16:99–113

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ishigami K, Jones AR, Dahmoush L, Leite LV, Pakalniskis MG, Barloon TJ (2015) Imaging spectrum of renal oncocytomas: a pictorial review with pathologic correlation. Insights Imaging 6:53–64

    Article  PubMed  Google Scholar 

  6. Schieda N, McInnes MD, Cao L (2014) Diagnostic accuracy of segmental enhancement inversion for diagnosis of renal oncocytoma at biphasic contrast enhanced CT: systematic review. Eur Radiol 24:1421–1429

    Article  PubMed  Google Scholar 

  7. Remzi M, Ozsoy M, Klingler HC et al (2006) Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J Urol 176:896–899

    Article  PubMed  Google Scholar 

  8. Sasaguri K, Takahashi N, Gomez-Cardona D et al (2015) Small (< 4 cm) renal mass: differentiation of oncocytoma from renal cell carcinoma on biphasic contrast-enhanced CT. AJR Am J Roentgenol 205:999–1007

    Article  PubMed  Google Scholar 

  9. Bahouth Z, Halachmi S, Meyer G, Avitan O, Moskovitz B, Nativ O (2015) The natural history and predictors for intervention in patients with small renal mass undergoing active surveillance. Adv Urol 2015

  10. Gordetsky J, Eich M-L, Garapati M, del Carmen Rodriguez Pena M, Rais-Bahrami S (2019) Active surveillance of small renal masses. Urology 123:157–166

    Article  PubMed  Google Scholar 

  11. Abdel-Rahman O (2018) Impact of histological subtype on outcomes of renal cell carcinoma patients. J Drug Assess 7:14–20

    Article  Google Scholar 

  12. Keegan KA, Schupp CW, Chamie K, Hellenthal NJ, Evans CP, Koppie TM (2012) Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol 188:391–397

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang R, Wolf JS Jr, Wood DP Jr, Higgins EJ, Hafez KS (2009) Accuracy of percutaneous core biopsy in management of small renal masses. Urology 73:586–590

  14. Lim CS, Schieda N, Silverman SG (2019) Update on indications for percutaneous renal mass biopsy in the era of advanced CT and MRI. AJR Am J Roentgenol 212:1187–1196

    Article  Google Scholar 

  15. Gellert LL, Mehra R, Chen YB et al (2014) The diagnostic accuracy of percutaneous renal needle core biopsy and its potential impact on the clinical management of renal cortical neoplasms. Arch Pathol Lab Med 138:1673–1679

    Article  PubMed  Google Scholar 

  16. He Q, Wang H, Kenyon J et al (2015) Accuracy of percutaneous core biopsy in the diagnosis of small renal masses (≤ 4.0 cm): a meta-analysis. Int Braz J Urol 41:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marconi L, Dabestani S, Lam TB et al (2016) Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol 69:660–673

    Article  PubMed  Google Scholar 

  18. Menogue SR, O'Brien BA, Brown AL, Cohen RJ (2013) Percutaneous core biopsy of small renal mass lesions: a diagnostic tool to better stratify patients for surgical intervention. BJU Int 111:E146–E151

    Article  PubMed  Google Scholar 

  19. Giménez-Bachs JM, Salinas-Sánchez AS (2019) Improving the diagnosis of renal masses: can we approach the histological diagnosis to the image? Ann Transl Med 7:56–56

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kay FU, Pedrosa I (2017) Imaging of solid renal masses. Radiol Clin North Am 55:243–258

    Article  PubMed  Google Scholar 

  21. Lopes Vendrami C, Parada Villavicencio C, DeJulio TJ et al (2017) Differentiation of solid renal tumors with multiparametric MR imaging. Radiographics 37:2026–2042

    Article  PubMed  Google Scholar 

  22. Low G, Huang G, Fu W, Moloo Z, Girgis S (2016) Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol 8:484–500

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim JK, Kim TK, Ahn HJ, Kim CS, Kim K-R, Cho K-S (2002) Differentiation of subtypes of renal cell carcinoma on helical CT scans. AJR Am J Roentgenol 178:1499–1506

    Article  PubMed  Google Scholar 

  24. Prasad SR, Humphrey PA, Catena JR et al (2006) Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics 26:1795–1806

    Article  PubMed  Google Scholar 

  25. Young JR, Margolis D, Sauk S, Pantuck AJ, Sayre J, Raman SS (2013) Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 267:444–453

    Article  PubMed  Google Scholar 

  26. Feng Z, Shen Q, Li Y, Hu Z (2019) CT texture analysis: a potential tool for predicting the Fuhrman grade of clear-cell renal carcinoma. Cancer Imaging 19:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang GM, Shi B, Xue HD, Ganeshan B, Sun H, Jin ZY (2019) Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 74:287–294

    Article  PubMed  Google Scholar 

  28. Krishna S, Sadoughi N, McInnes MDF, Chatelain R, MacDonald DB, Schieda N (2018) Attenuation and degree of enhancement with conventional 120-kVp polychromatic CT and 70-keV monochromatic rapid kilovoltage-switching dual-energy CT in cystic and solid renal masses. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.17.19226:1-8

  29. Marin D, Davis D, Roy Choudhury K et al (2017) Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology 284:737–747

    Article  PubMed  Google Scholar 

  30. Mileto A, Allen BC, Pietryga JA et al (2017) Characterization of incidental renal mass with dual-energy CT: diagnostic accuracy of effective atomic number maps for discriminating nonenhancing cysts from enhancing masses. AJR Am J Roentgenol 209:W221–W230

    Article  PubMed  Google Scholar 

  31. Mileto A, Nelson RC, Paulson EK, Marin D (2015) Dual-energy MDCT for imaging the renal mass. AJR Am J Roentgenol 204:W640–W647

    Article  PubMed  Google Scholar 

  32. Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700

    Article  PubMed  Google Scholar 

  33. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653

    Article  PubMed  Google Scholar 

  34. Dai C, Cao Y, Jia Y et al (2018) Differentiation of renal cell carcinoma subtypes with different iodine quantification methods using single-phase contrast-enhanced dual-energy CT: areal vs. volumetric analyses. Abdom Radiol (NY) 43:672–678

    Article  Google Scholar 

  35. Mileto A, Marin D, Alfaro-Cordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820

    Article  PubMed  Google Scholar 

  36. Zarzour JG, Milner D, Valentin R et al (2017) Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol (NY) 42:727–734

    Article  Google Scholar 

  37. Kay FU, Canvasser NE, Xi Y et al (2018) Diagnostic performance and interreader agreement of a standardized MR imaging approach in the prediction of small renal mass histology. Radiology 287:543–553

    Article  PubMed  Google Scholar 

  38. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur Urol 70:93–105

    Article  PubMed  Google Scholar 

  39. Sadoughi N, Krishna S, Macdonald DB et al (2019) Diagnostic accuracy of attenuation difference and iodine concentration thresholds at rapid-kilovoltage-switching dual-energy CT for detection of enhancement in renal masses. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.18.20990:1-7

  40. Pooler BD, Pickhardt PJ, O'Connor SD, Bruce RJ, Patel SR, Nakada SY (2012) Renal cell carcinoma: attenuation values on unenhanced CT. AJR Am J Roentgenol 198:1115–1120

    Article  PubMed  Google Scholar 

  41. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259:257–262

    Article  PubMed  Google Scholar 

  42. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  43. Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF (2017) Update of dual-energy CT applications in the genitourinary tract. AJR Am J Roentgenol 208:1185–1192

    Article  PubMed  Google Scholar 

  44. Salameh J-P, McInnes MDF, McGrath TA, Salameh G, Schieda N (2019) Diagnostic accuracy of dual-energy CT for evaluation of renal masses: systematic review and meta-analysis. AJR Am J Roentgenol 212:W100–W105

    Article  PubMed  Google Scholar 

  45. Mileto A, Marin D, Ramirez-Giraldo JC et al (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202:W466–W474

    Article  PubMed  Google Scholar 

  46. Connolly MJ, McInnes MDF, El-Khodary M, McGrath TA, Schieda N (2017) Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: a systematic review and meta-analysis. Eur Radiol 27:4324–4335

    Article  PubMed  Google Scholar 

  47. Patel BN, Vernuccio F, Meyer M et al (2019) Dual-energy CT material density iodine quantification for distinguishing vascular from nonvascular renal lesions: normalization reduces intermanufacturer threshold variability. AJR Am J Roentgenol 212:366–376

    Article  PubMed  Google Scholar 

  48. Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107

    Article  CAS  PubMed  Google Scholar 

  49. Kim JK, Kim SH, Jang YJ (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174

    Article  PubMed  Google Scholar 

  50. Karlo CA, Donati OF, Burger IA et al (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol 23:1738–1744

    Article  PubMed  Google Scholar 

  51. Ramamurthy NK, Moosavi B, McInnes MDF, Flood TA, Schieda N (2015) Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol 70:304–316

    Article  CAS  PubMed  Google Scholar 

  52. Schieda N, Lim RS, Krishna S, McInnes MDF, Flood TA, Thornhill RE (2018) Diagnostic accuracy of unenhanced CT analysis to differentiate low-grade from high-grade chromophobe renal cell carcinoma. AJR Am J Roentgenol 210(5):1079–1087

  53. Galmiche C, Bernhard J-C, Yacoub M, Ravaud A, Grenier N, Cornelis F (2016) Is multiparametric MRI useful for differentiating oncocytomas from chromophobe renal cell carcinomas? AJR Am J Roentgenol 208:343–350

    Article  PubMed  Google Scholar 

  54. Cornelis F, Tricaud E, Lasserre AS (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24:1068

    Article  CAS  PubMed  Google Scholar 

  55. Schieda N, Al Dandan O, Kielar AZ, Flood TA, McInnes MDF, Siegelman ES (2014) Pitfalls of adrenal imaging with chemical shift MRI. Clin Radiol 69:1186–1197

    Article  CAS  PubMed  Google Scholar 

  56. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE (2015) Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 276:787

    Article  PubMed  Google Scholar 

  57. McGahan JP, Sidhar K, Fananapazir G et al (2017) Renal cell carcinoma attenuation values on unenhanced CT: importance of multiple, small region-of-interest measurements. Abdom Radiol (NY) 42:2325–2333

    Article  Google Scholar 

  58. Hur BY, Lee JM, Hyunsik W et al (2014) Quantification of the fat fraction in the liver using dual-energy computed tomography and multimaterial decomposition. J Comput Assist Tomogr 38:845–852

    Article  PubMed  Google Scholar 

  59. Jhaveri KS, Elmi A, Hosseini-Nik H (2015) Predictive value of chemical-shift MRI in distinguishing clear cell renal cell carcinoma from nonclear cell renal cell carcinoma and minimal-fat angiomyolipoma. AJR Am J Roentgenol 205:W79–86

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Schieda.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Nicola Schieda.

Conflict of interest

The authors declare that they have no conflict of interest.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Case–control study

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udare, A., Walker, D., Krishna, S. et al. Characterization of clear cell renal cell carcinoma and other renal tumors: evaluation of dual-energy CT using material-specific iodine and fat imaging. Eur Radiol 30, 2091–2102 (2020). https://doi.org/10.1007/s00330-019-06590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06590-1

Keywords

Navigation