Skip to main content
Log in

3D Finite Element Modeling of FRP-Confined Rectangular Short Columns Considering Variation of Poisson’s Ratio

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents a realistic as well as detailed 3D finite element model within the framework of concrete damage plasticity model in ABAQUS software to predict the behavior of CFRP-confined concrete short columns with various rectangular and square cross-sectional areas subjected to compressive monotonic loading. Considering a suitable yield criterion, orthotropic behavior of concrete is taken into account. Furthermore, to account for the hydrostatic-pressure-dependence behavior of concrete, a non-associated flow rule based on Drucker–Prager potential function is adopted in the simulation. As an intrinsic behavior of concrete, the phenomenon of variation of Poisson’s ratio is modeled by using the USDFLD subroutine available in the software package, and the effect of Poisson’s ratio variation on the responses is investigated. To this end, nineteen specimens examined in three previous studies are numerically modeled using the proposed approach for two cases, namely fixed and variable Poisson’s ratio (totally 38 numerical models). Comparisons between experimental and numerical results corroborate that the proposed numerical approach is very appropriate for estimating both the ultimate axial strain and the axial stress–strain behavior of the CFRP-confined concrete columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abaqus (2014). Abaqus user manual (version 6.14). Dassault Systèmes, Providence, RI

  • Cao Y, Wu Y-F, Jiang C (2018) Stress-strain relationship of FRP confined concrete columns under combined axial load and bending moment. Compos B Eng 134:207–217

    Article  Google Scholar 

  • Chaallal O, Hassan M, Shahawy M (2003) Confinement model for axially loaded short rectangular columns strengthened with fiber-reinforced polymer wrapping. Struct J 100(2):215–221

    Google Scholar 

  • Chakrabarti A, Chandra A, Bharagava P (2008) Finite element analysis of concrete columns confined with FRP sheets. J Reinf Plast Compos 27(12):1349–1373

    Article  Google Scholar 

  • Doran B, Koksal H, Turgay T (2009) Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP. Mater Des 30(8):3066–3075

    Article  Google Scholar 

  • Eid R, Paultre P (2017) Compressive behavior of FRP-confined reinforced concrete columns. Eng Struct 132:518–530

    Article  Google Scholar 

  • El Fattah AA (2018) New axial stress-strain model of square concrete columns confined with lateral steel and FRP. Compos Struct 202:731–751

    Article  Google Scholar 

  • Haghinejada A, Nematzadeh M (2016) Three-dimensional finite element analysis of compressive behavior of circular steel tube-confined concrete stub columns by new confinement relationships. Latin Am J Solids Struct 13(5):916–944

    Article  Google Scholar 

  • Hany NF, Hantouche EG, Harajli MH (2016) Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity. Eng Struct 125:1–14

    Article  Google Scholar 

  • Harajli MH (2006) Axial stress–strain relationship for FRP confined circular and rectangular concrete columns. Cement Concr Compos 28(10):938–948

    Article  Google Scholar 

  • Hsu L, Hsu C-T (1994) Complete stress—strain behaviour of high-strength concrete under compression. Mag Concrete Res 46(169):301–312

    Article  Google Scholar 

  • Issa CA, Chami P, Saad G (2009) Compressive strength of concrete cylinders with variable widths CFRP wraps: experimental study and numerical modeling. Constr Build Mater 23(6):2306–2318

    Article  Google Scholar 

  • Karabinis AI, Rousakis TC, Manolitsi GE (2008) 3D finite-element analysis of substandard RC columns strengthened by fiber-reinforced polymer sheets. J Compos Constr 12(5):531–540

    Article  Google Scholar 

  • Kmiecik P, Kamiński M (2011) Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch Civil Mech Eng 11(3):623–636

    Article  Google Scholar 

  • Koksal H, Doran B, Turgay T (2009) A practical approach for modeling FRP wrapped concrete columns. Constr Build Mater 23(3):1429–1437

    Article  Google Scholar 

  • Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses. J Proc

  • Labibzadeh M (2015) The numerical simulations of the strengthened RC slabs with CFRPs using standard CDP material model of Abaqus code. Eur J Environ Civil Eng 19(10):1268–1287

    Article  Google Scholar 

  • Lam L, Teng J (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17(6–7):471–489

    Article  Google Scholar 

  • Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Article  Google Scholar 

  • Lim JC, Ozbakkaloglu T (2014) Design model for FRP-confined normal-and high-strength concrete square and rectangular columns. Mag Concrete Res 66(20):1020–1035

    Article  Google Scholar 

  • Lin G, Teng J (2017) Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading. J Compos Constr 21(4):04017003

    Article  Google Scholar 

  • Lo S, Kwan A, Ouyang Y, Ho J (2015) Finite element analysis of axially loaded FRP-confined rectangular concrete columns. Eng Struct 100:253–263

    Article  Google Scholar 

  • Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Majewski S (2003) The mechanics of structural concrete in terms of elasto-plasticity. Publishing House of Silesian University of Technology, Gliwice

    Google Scholar 

  • Ottosen NS (1979) Constitutive model for short-time loading of concrete. J Eng Mech Div ASCE 105:127–141

    Google Scholar 

  • Ozbakkaloglu T, Lim JC, Vincent T (2013) FRP-confined concrete in circular sections: review and assessment of stress–strain models. Eng Struct 49:1068–1088

    Article  Google Scholar 

  • Pan Y, Guo R, Li H, Tang H, Huang J (2017) Analysis-oriented stress–strain model for FRP-confined concrete with preload. Compos Struct 166:57–67

    Article  Google Scholar 

  • Rochette P, Labossiere P (2000) Axial testing of rectangular column models confined with composites. J Compos Constr 4(3):129–136

    Article  Google Scholar 

  • Systèmes D (2013) ABAQUS user’s & theory manuals—release 6.14-1, Providence, RI, USA

  • Taghia P, Bakar SA (2013) Mechanical behaviour of confined reinforced concrete-CFRP short column-based on finite element analysis. World Appl Sci J 24(7):960–970

    Google Scholar 

  • Teng J, Huang Y, Lam L, Ye L (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J Compos Constr 11(2):201–210

    Article  Google Scholar 

  • Teng J, Jiang T, Lam L, Luo Y (2009) Refinement of a design-oriented stress–strain model for FRP-confined concrete. J Compos Constr 13(4):269–278

    Article  Google Scholar 

  • Xiao Q, Teng J, Yu T, Lam L (2011) Three-dimensional finite element model for FRP-confined circular concrete cylinders under axial compression. In: Advances in FRP composites in civil engineering, Springer, pp 654–657

  • Yeh F-Y, Chang K-C (2012) Size and shape effects on strength and ultimate strain in FRP confined rectangular concrete columns. J Mech 28(4):677–690

    Article  Google Scholar 

  • Youssf O, ElGawady MA, Mills JE, Ma X (2014) Finite element modelling and dilation of FRP-confined concrete columns. Eng Struct 79:70–85

    Article  Google Scholar 

  • Yu T, Teng J, Wong Y, Dong S (2010a) Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model. Eng Struct 32(3):665–679

    Article  Google Scholar 

  • Yu T, Teng J, Wong Y, Dong S (2010b) Finite element modeling of confined concrete-II: plastic-damage model. Eng Struct 32(3):680–691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Broujerdian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, M., Broujerdian, V. 3D Finite Element Modeling of FRP-Confined Rectangular Short Columns Considering Variation of Poisson’s Ratio. Iran J Sci Technol Trans Civ Eng 44, 449–461 (2020). https://doi.org/10.1007/s40996-019-00276-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-019-00276-w

Keywords

Navigation