Skip to main content
Log in

Recent Tomographic Imaging Developments at the PSICHE Beamline

  • Thematic Section: 3D Materials Science
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

PSICHE is a high-energy, multi-technique beamline at the SOLEIL synchrotron facility. It performs X-ray tomography for materials science and other applications and X-ray diffraction for samples at extreme conditions. The beamline has been in service for user experiments since 2013, but is in continual development to add new capabilities. In this article, we present a series of new developments which combine diffraction and tomography and which are of relevance to the study of materials and manufacturing. By combining these techniques, we can add quantitative structural information from diffraction to morphological information obtained by tomography. Recent developments in very fast tomography allow dynamic processes to be studied in situ and in 3D with a time (frequency) resolution of 2 Hz. We have developed in situ sample environments to enable fast tomography measurements at high temperature and pressure, which will allow future studies of industrial processes such as hot isostatic pressing (HIP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. King A, Guignot N, Zerbino P, Boulard E, Desjardins K et al (2016) Tomography and imaging at the PSICHE beamline of the SOLEIL synchrotron. Rev Sci Instrum 87:093704. https://doi.org/10.1063/1.4961365

    Article  CAS  Google Scholar 

  2. Wang Y, Uchida T, Von Dreele R, Rivers ML, Nishiyama N, Funakoshi K, Nozawa A, Keneko H (2004) A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation. J Appl Crystallogr 37:947–956

    Article  CAS  Google Scholar 

  3. Li J, Guériau P, Bellato M, King A, Robbiola L, Thoury M, Baillon M, Fossé C, Cohen SX, Moulhérat C, Thomas A, Galtier P, Bertrand L (2019) Synchrotron-based phase mapping in corroded metals: insights from early copper-base artifacts. Anal Chem 91(3):1815–1825. https://doi.org/10.1021/acs.analchem.8b02744

    Article  CAS  Google Scholar 

  4. Rivers M (2017) High-speed tomography using pink beam at GeoSoilEnviroCARS. In: Conference: SPIE optical engineering + applications, United States. https://doi.org/10.1117/12.2238240

  5. Nielsen SF, Wolf A, Poulsen HF, Ohler M, Lienert U, Owen RA (2000) A conical slit for three-dimensional XRD mapping. J Synchrotron Radiat 7:103–109. https://doi.org/10.1107/S0909049500000625

    Article  CAS  Google Scholar 

  6. Martins RV, Honkimäki V (2003) Depth resolved strain and phase mapping of dissimilar friction stir welds using high energy synchrotron radiation. Texture Microstruct 35:145–152. https://doi.org/10.1080/07303300310001628625

    Article  CAS  Google Scholar 

  7. Bleuet P, Welcomme E, Dooryhée E, Susini J et al (2008) Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat Mater 7:468–472. https://doi.org/10.1038/nmat2168

    Article  CAS  Google Scholar 

  8. Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2018) Scanning electron microscopy and X-ray microanalysis. Springer, New York. https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  9. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43

    Article  CAS  Google Scholar 

  10. Rack A, Scheel M, Hardy L, Curfs C, Bonnin A, Reichart H (2014) Exploiting coherence for real-time studies by single bunch imaging. J Synchrotron Radiat 21:815–818. https://doi.org/10.1107/S1600577514005852

    Article  CAS  Google Scholar 

  11. pco.dimax HS4. PCO AG, Germany. https://www.pco.de/highspeed-cameras/pcodimax-hs4/. Accessed 29 April 2019

  12. Weitkamp T, Scheel M, Giorgetta JL, Joyet V, Le Roux V, Cauchon G, Moreno T, Polack F, Samama JP (2017) The tomography beamline ANATOMIX at Synchrotron SOLEIL. In: IOP conference series: journal of physics conference series, vol 849, p 012037. https://doi.org/10.1088/1742-6596/849/1/012037

    Google Scholar 

  13. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Eath Sci Rev 123:1–17. https://doi.org/10.1016/j.earscirev.2013.04.003

    Article  Google Scholar 

  14. Fusseis F, Xiao X, Schrank C, De Carlo F (2014) A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics. J Struct Geol 65:1–16. https://doi.org/10.1016/j.jsg.2014.02.005

    Article  Google Scholar 

  15. Mao WL, Lin Y, Liu Y, Liu J (2019) Applications for nanoscale imaging at high pressure. Engineering. https://doi.org/10.1016/j.eng.2019.01.006

    Article  Google Scholar 

  16. Lin Y, Zeng Q, Yang W, Mao WL (2013) Pressure-induced densification in GeO2 glass: a transmission x-ray microscopy study. Appl Phys Lett 103:261909. https://doi.org/10.1063/1.4860993

    Article  CAS  Google Scholar 

  17. Philippe J, Le Godec Y, Mezouar M, Berg M et al (2016) Rotating tomography Paris–Edinburgh cell: a novel portable press for micro-tomographic 4-D imaging at extreme pressure/temperature/stress conditions. High Press Res. https://doi.org/10.1080/08957959.2016.1221951

    Article  Google Scholar 

  18. Wang Y, Uchida T, Westferro F, Rivers ML et al (2005) High-pressure X-ray tomography microscope: synchrotron computed microtomography at high pressure and temperature. Rev Sci Instrum 76:073709–1–073709–6. https://doi.org/10.1063/1.1979477

    Article  CAS  Google Scholar 

  19. Boulard E, King A, Guignot N, Deslandes J-P et al (2018) High-speed tomography under extreme conditions at the PSICHE beamline of the SOLEIL Synchrotron. J Synchrotron Radiat 25:818–825. https://doi.org/10.1107/S1600577518004861

    Article  CAS  Google Scholar 

  20. Urakawa S, Terasaki HP, Funakoshi K, Uesugi K, Yamamoto S (2010) Development of high pressure apparatus for X-ray microtomography at SPring-8. J Phys Conf Ser 215:012026. https://doi.org/10.1088/1742-6596/215/1/012026

    Article  Google Scholar 

  21. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press

  22. Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18:617–629. https://doi.org/10.1107/S0909049511002895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Dimax camera was on loan from the beamline ANATOMIX, an Equipment of Excellence (EQUIPEX) funded by the Investments for the Future program of the French National Research Agency (ANR), Project NanoimagesX, Grant No. ANR-11-EQPX-0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. King.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A., Guignot, N., Deslandes, JP. et al. Recent Tomographic Imaging Developments at the PSICHE Beamline. Integr Mater Manuf Innov 8, 551–558 (2019). https://doi.org/10.1007/s40192-019-00155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-019-00155-2

Keywords

Navigation