Skip to main content
Log in

Coupling remote sensing with a water balance model for soybean yield predictions over large areas

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In this study a new method for predicting soybean yield over large spatial scales, overcoming the difficulties of scalability, is proposed. The method is based on the so-called “simplified triangle” remote sensing technique which is coupled with a crop prediction model of Doorenbos and Kassam 1979 (DK) and the climatological water balance model of Thornthwaite and Mather 1955 (ThM). In the method, surface soil water content (Mo), evapotranspiration (ET), and evaporative fraction (EF) are derived from satellite-derived surface radiant temperature (Ts) and normalized difference vegetation index (NDVI). Use of the proposed method is demonstrated in Brazil’s Paraná state for crop years 2002–03 to 2011–12. The soybean crop yield model of DK is evaluated using remotely estimated EF values obtained by a simplified triangle. Predicted crop yield by the satellite measurements and from archived Tropical Rainfall Measuring Mission data (TRMM) and European Centre for Medium-Range Weather Forecasts (ECMWF) data were in good agreement with the measured crop yield. A “d2” index (modified Willmott) between 0.8 and 0.98 and RMSE between 30.8 (kg/ha) to 57.2 (kg/ha) was reported. Crop yield predicted using EF from the triangle were statistically better than the DK and ThM using values of the equivalent of EF obtained from archived surface data when compared with the measured soybean crop data. The proposed method requires no ancillary meteorological or surface data apart from the two satellite images. This makes the technique easy to apply allowing providing spatiotemporal estimates of crop yield in large areas and at different spatial scales requiring little or no surface data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves GR, Teixeira IR, Melo FR, Souza RTG, Silva AG (2018) Estimating soybean yields with artificial neural networks. Acta Sci, Agron 40:35–50. https://doi.org/10.4025/actasciagron.v40i1.35250

    Article  Google Scholar 

  • Bao Y, Lin L, Wu S, Deng KAK, Petropoulos GP (2018) Surface Soil Moisture Retrievals Over Partially Vegetated Areas From the Synergy of Sentinel-1 & Landsat 8 Data Using a Modified Water-Cloud Model. Int J Appl Earth Obs Geoinf 72:76–85. https://doi.org/10.1016/j.jag.2018.05.026

    Article  Google Scholar 

  • Barrett BW, Petropoulos GP (2013) Remote sensing of energy fluxes and soil moisture content. CRC Press, Boca Raton, pp 85–120 ISBN 9781466505780

    Book  Google Scholar 

  • Bastiaassen WGM, Noordman EJM, Pelgrum H, Davids G, Allen RG (2005) SEBAL for spatially distributed ET under actual management and growing conditions. ASCE Journal of Irrigation and Drainage Engineering 131:85–93

    Article  Google Scholar 

  • Berka LMS, Rudorff BFT (2003) Shimabukuro, Y.E. soybean yield estimation by an agrometeorological model in a GIS. Sci Agric 60(3):433–440

    Article  Google Scholar 

  • Bruno IP, Silva AL, Reichardt K, Dourado-Neto D, Bacchi OOS, Volpe CA (2007) Comparison between climatological and field water balances for a coffee crop. Sci Agric 64:215–220

    Article  Google Scholar 

  • Camargo AP, Molle B, Tomas S, Frizzone JA (2014) Assessment of clogging effects on lateral hydraulics: proposing a monitoring and detection protocol. Irrig Sci 32(3):181–191

    Article  Google Scholar 

  • Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil. RevistaBrasileira de Agrometeorologia Santa Maria 5(1):89–97

    Google Scholar 

  • Carlson T (2007) An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 7:1612–1629

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Schmugge TJ (1995) An interpretation of methodologies for indirect measurement of soil water content. Agric For Meteorol 77:191–205

    Article  Google Scholar 

  • Carlson TN (2013) Triangle models and misconceptions. International Journal of Remote Sensing Applications 3(3):155–158

    Google Scholar 

  • Carlson TN, Petropoulos GP (2019) A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: the simplified triangle. Int J Remote Sens [in press]

  • Dalposso GH, Uribe-Opazo MA, Johann JA (2016) Soybean yield modeling using bootstrap methods for small samples. Span J Agric Res 14(3):e0207. https://doi.org/10.5424/sjar/2016143-8635

    Article  Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. Rome, FAO, 197p. (irrigation and drainage paper, 33)

  • Dourado-Neto D, de Jong van Lier Q, Metselaar K, Reichardt K, Nielsen DR (2010) General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method. Sci Agric (Piracicaba, Braz.) 67(1):87–95

    Article  Google Scholar 

  • Er-Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water conumptions of wheat crops in a semi-arid region. Agric Water Manag 87(1):41–54

    Article  Google Scholar 

  • Evett SR, Kustas WP, Gowda PH, Anderson MC, Prueger JH, Howell TA (2012) Overview of the bushland evapotranspiration and agricultural remote sensing experiment 2008 (BEAREX08): a field experiment evaluating methods for quantifying ET at multiple scales. Adv Water Resour 50:4–19

    Article  Google Scholar 

  • Feng Z, Li-Wen Z, Jing-Jing S, Jing Feng H (2014) Soil moisture monitoring based on land surface temperature vegetation index space derived from MODIS data. Pedosphere 24(4):450–460

    Article  Google Scholar 

  • Ferreira DB, Rao VB (2011) Recent climate variability and its impacts on soybean yields in southern Brazil. Theor Appl Climatol 105:83–97. https://doi.org/10.1007/s00704-010-0358-8

    Article  Google Scholar 

  • Garcia M, Fernández N, Villagarcía L, Domingo F, Puigdefábregas J, Sandholt I (2014) Accuracy of the temperature–vegetation dryness index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sens Environ 149:100–117

    Article  Google Scholar 

  • Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J Appl Meteorol 34:745–756

    Article  Google Scholar 

  • Gillies RR, Carlson TN, Cui J, Kustas WP, Humes KS (1997) Verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index NDVI and surface radiant temperature. Int J Remote Sens 18:3145–3166

    Article  Google Scholar 

  • Goyal S (2013) Artificial neural networks in vegetables: a comprehensive review. Scientific Journal of Crop Science 2(7):75–94. https://doi.org/10.14196/sjcs.v2i7.928

    Article  Google Scholar 

  • Gusso A, Arvor D, Ricardo Ducati L (2017) Model for soybean production forecast based on prevailing physical conditions. Pesq Agrop Brasileira 52(2):95–103. https://doi.org/10.1590/S0100-204X2017000200003

    Article  Google Scholar 

  • Gusso A, Ducati JR, Veronez MR, Arvor D, Jr S, Da LG (2013) Spectral model for soybean yield estimate using Modis/EVI data. Int J Geosci 4:1233–1241. https://doi.org/10.4236/ijg.2013.49117

    Article  Google Scholar 

  • Huang C, Wylie B, Yang L, Homer C, Zylstra G (2002) Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23(8):1741–1748

    Article  Google Scholar 

  • Ide AK, Baptista GM (2018) Modis time series for irrigated-area mapping in hydrographic basins of the Brazilian northeastern region. Pesq. Agropec. Bras., Brasília 53(1):80–89

    Article  Google Scholar 

  • Jiang L, Islam S (2001) Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour Res 37(2):329–340

    Article  Google Scholar 

  • Johann JA, Rocha JV, Garbellini D, Lamparelli RA (2012) Estimating areas with summer crops in Paraná, Brazil using multitemporal EVI / Modis images. Pesq agropec bras 47(9):1295–1306

    Article  Google Scholar 

  • Kasim AA (2015) Derivation of surface soil water content using a simplified geometric method in Allahabad District, Uttar Pradesh India. Int J Sci Eng Res 6(10)

  • Kourgialas NN, Karatzas GP, Koubouris GC (2017) GIS policy approach for assessing the effect of fertilizers on the quality of drinking and irrigation water and wellhead protection zones (Crete, Greece). J Environ Manag 189:150–159

    Article  Google Scholar 

  • Lambin E, Ehrlich D (1996) The surface temperature-vegetation index space for land cover and land cover-change analysis. Int J Remote Sens 17:463–487

    Article  Google Scholar 

  • Legates DR, Mccabe GJ (1999) Evaluating the use of ‘goodness- of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

    Article  Google Scholar 

  • Lei H, Yang D (2010) Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China plain. Agric For Meteorol 150:581–589

    Article  Google Scholar 

  • Liou Y-A, Kar SK (2014) Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—a review. Energies 7:2821–2849

    Article  Google Scholar 

  • Mammadov J et al (2018) Wild relatives of maize, Rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    Article  Google Scholar 

  • Martins AN, Ortolani AA (2006) Estimativa de produção de laranja valência pela adaptação de um modelo agrometeorológico. Bragantia 65(2):355–361

    Article  Google Scholar 

  • De Melo RW, Fontana DC, Berlato MA, Ducati JR (2008) An agrometeorological-spectral model to estimate soybean yield, applied to southern Brazil. Int J Remote Sens 29:4013–4028. https://doi.org/10.1080/01431160701881905

    Article  Google Scholar 

  • Mercante E, Lamparelli RAC, Uribe-Opazo MA, Rocha JV (2010) Linear regression models to soybean yield estimate in the west region of the state of Paraná, Brazil, using spectral data. Eng Agríc 30(3):504–517

    Article  Google Scholar 

  • Meyer S J (1990) The development of a crop specific drought index for corn. Lincoln/USA. 165p. Doctoral dissertation - University of Nebraska

  • Minacapilli M, Consoli S, Vanella D, Ciraolo G, Motisi A (2016) A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens Environ 174:10–23

    Article  Google Scholar 

  • Moraes AVC, Camargo MBP, Mascarenhas HAA, Miranda MAC, Pereira JCVNA (1998) Teste e análise de modelos agrometeorológicos de estimativa de produtividade para a cultura da soja na região de Ribeirão Preto. Bragantia, Campinas 57(2):393–406

    Article  Google Scholar 

  • Nehal L, Abderrahmane H, Abdelkader K, Zahira S, Mansour Z (2017) Evapotranspiration and surface energy fluxes estimation using the Landsat-7 enhanced thematic mapper plus image over a semiarid Agrosystem in the North-west of Algeria. Revista Brasileira de Meteorologia 32(4):691–702. https://doi.org/10.1590/0102-7786324016

    Article  Google Scholar 

  • Pablos M, Martínez-Fernández J, Sánchez N, González-Zamora Á (2017) Temporal and spatial comparison of agricultural drought indices from moderate resolution satellite soil moisture data over Northwest Spain. Remote Sens 9:11. https://doi.org/10.3390/rs9111168 (1168)

    Article  Google Scholar 

  • Pagano MC, Miransari M (2016) The importance of soybean production worldwide. In book: Abiotic and Biotic Stresses in Soybean Production 1:1–26. https://doi.org/10.1016/B978-0-12-801536-0.00001-3

    Article  Google Scholar 

  • Pandey PC, Mandal V, Katiyar S, Kumar P, Tomar V, Patairiya S, Ravisankar N, Gangwar B (2015) Geospatial Approach to Assess the Impact of Nutrients on Rice Equivalent Yield using MODIS Sensors' Based MOD13Q1-NDVI Data. Sensors Journal, IEEE 15(11):6108–6115

    Article  Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Guaíba: Agropecuária 478

  • Petropoulos G, Ireland G, Lamine S, Griffiths HM, Ghilain N, Anagnostopoulos V, North MR, Srivastava PK, Georgopoulou H (2016) Operational evapotranspiration estimates from SEVIRI in support of sustainable water management. Int J Appl Earth Obs Geoinf 49:175–187

    Article  Google Scholar 

  • Petropoulos G, Carlson TN, Wooster MJ, Islam S (2009) A review osTs/VI remote sensing based methods for the retrieval of land surfasse energy fluxes and soil surface moisture. Prog Phys Geogr 33:224–250

    Article  Google Scholar 

  • Petropoulos GP, Srivastava PK, Piles M, Pearson S (2018a) EO-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability MDPI 10:181-1–181-18120. https://doi.org/10.3390/su10010181

  • Petropoulos GP, McCalmont JP (2017) An operational in-situ soil moisture and soil temperature monitoring network for West Wales, UK: the WSMN network. Sensors 17:1481–1491. https://doi.org/10.3390/s17071481

    Article  Google Scholar 

  • Petropoulos GP, Srivastava PK, Feredinos KP, Hristopoulos D (2018b) Evaluating the capabilities of optical/TIR imagine sensing systems for quantifying soil water content. Geocarto International. https://doi.org/10.1080/10106049.2018.1520926

  • Prasad AK, Chai L, Singh RP, Kafatos M (2006) Crop yield estimation model for Iowa using remote sensing and surface parameters. Int J Appl Earth Obs Geoinf 8(1):26–33

    Article  Google Scholar 

  • Price JC (1990) Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Geosci Remote Sens Lett 28:940–948

    Article  Google Scholar 

  • Rao NH, Sarma PBS, Chander SA (1988) Simple dated water-production function for use in irrigated agriculture. Agric Water Manag 13:25–32

    Article  Google Scholar 

  • Safa M, Samarasinghe S, Nejat M (2015) Prediction of wheat production using artificial neural networks and investigating indirect factors affecting it: case study in Canterbury province, New Zealand. J Agric Sci Technol 17(4):791–803

    Google Scholar 

  • Silva AL, Roveratti R, Reichardt K, Bacchi OOS, Timm LC, Bruno IP, Oliveira JCM, Dourado-Neto D (2006) Variability of water balance components in a coffee crop grown in Brazil. Sci Agric 63:105–114

    Article  Google Scholar 

  • Silva-Fuzzo DF, Rocha JV (2016) Simplified triangle method for estimating evaporative fraction (EF) over soybean crops. J Appl Remote Sens 10(4):046027

    Article  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu LA (2008) New model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112:1633–1646. https://doi.org/10.1016/j.rse.2007.08.004

    Article  Google Scholar 

  • Jong SG, Van Lier Q, Dourado-Neto D (2007) Computer assisted Köppen climate classification for Brazil. Int J Climatol 27:257–266

    Article  Google Scholar 

  • Srivastava PK, Pandley PC, Petropoulos GP, Kourgialas NK, Pandley S, Singh U (2019) GIS and remote sensing aided information for soil moisture estimation: a comparative study of interpolation technique. Resources MDPI 8(2):70. https://doi.org/10.3390/resources8020070

    Article  Google Scholar 

  • Stein A, Bastiaanssen WGM, De Bruin S, Cracknell AP, Curran PJ, Fabbri AG, Gorte BGH, Van Groenigen JW, Van Der Meer FD, Saldana A (1998) Integrating spatial statistics and remote sensing. Int J Remote Sens 19(9):1793–1814. https://doi.org/10.1080/014311698215252

    Article  Google Scholar 

  • Stisen S, Sandholt I, Norgaard A, Fensholt R, Eklundh L (2007) Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens Environ 110:262–274

    Article  Google Scholar 

  • Tao F, Yokozawa M, Liu J, Zhang Z (2008) Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim Res 38:83–94. https://doi.org/10.3354/cr00771

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1995) The water balance. In: Centerton, N. J. (ed), 104p. (Publ. in Climatology, v. 8, n. 1

  • Tian J, Hongbo S, Xiaomin S, Shaohui C, He H, Linjun Z (2013) Impact of the spatial domain size on the performance of the Ts-VI triangle method in terrestrial evapotranspiration estimation. Remote Sens 5:1998–2013

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis JJ, Feddema KM, Klink DR (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005

    Article  Google Scholar 

  • Yang H, Luo P, Wang J, Mou C, Mo L, Wang Z, Fu Y, Lin H, Yang Y, Bhatta LD (2015) Ecosystem evapotranspiration as a response to climate and vegetation coverage changes in Northwest Yunnan, China. PLoS One 10(8):e0134795. https://doi.org/10.1371/journal.pone.0134795

    Article  Google Scholar 

  • Zhang D, Zhou G (2016) Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors 6:1308

    Article  Google Scholar 

  • Zhu W, Shaofeng J, Aifeng L (2017) A universal Ts-VI triangle method for the continuous retrieval of evaporative fraction from MODIS products. J Geophys Res-Atmos 122(10):206–227

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brasil) for the scholarship given to Daniela F. Silva Fuzzo and the research financial support. GPP’s contribution has been financially supported by the FP7- People project ENViSIoN-EO (project reference number 752094) and the author gratefully acknowledges the financial support provided by the European Commission. All authors are grateful to the anonymous reviewers for their comments that resulted to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela F. Silva Fuzzo.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Fuzzo, D.F., Carlson, T.N., Kourgialas, N.N. et al. Coupling remote sensing with a water balance model for soybean yield predictions over large areas. Earth Sci Inform 13, 345–359 (2020). https://doi.org/10.1007/s12145-019-00424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-019-00424-w

Keywords

Navigation