Skip to main content
Log in

Solution Combustion Synthesis as a Novel Route to Preparation of Catalysts

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution combustion synthesis (SCS) is a solution approach to the self-propagating high-temperature synthesis (SHS) of nanomaterials. Since its invention in 1988, several simple oxides, mixed oxides, complex oxides, metals, alloys, and sulfides have been prepared by this method. Uniqueness of this technique is in its simplicity, lost cost, energy saving, and short reaction time and it can be scaled up to any kind of application. In the last 20 years, different types of catalysts, especially oxide ones, have been prepared and employed in several kinds of heterogeneous catalytic reactions related to environment, energy, and fine chemical processing. This review addresses the SCS method and catalytic properties of noble metal ionic catalysts, spinels, perovskites, delafossites, and other catalysts prepared in this route. Reactions associated with environmental catalysis, hydrogen energy related catalysis, conversion of CO2, and CH4 to useful chemicals and fuels, H2-O2 recombination, organic compounds related reactions and electrocatalysis are discussed. Special emphasis has been made on the origin of SCS-synthesized noble metal ionic catalysts and their excellent catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.

    Book  Google Scholar 

  2. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, pp. 14493–14586.

    Article  CAS  Google Scholar 

  3. Li, F.-T., Ran, J., Jaroniec, M., and Qiao, S.Z., Solution combustion synthesis of oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, pp. 17590–17610.

    Article  CAS  Google Scholar 

  4. Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, pp. 58090–58100.

    Article  CAS  Google Scholar 

  5. Merzhanov, A.G., History and recent developments in SHS, Ceram. Int., 1995, vol. 21, pp. 371–379.

    Article  CAS  Google Scholar 

  6. Merzhanov, A.G., Combustion processes that synthesize materials, J. Mater. Process. Technol., 1996, vol. 56, pp. 221–241.

    Article  Google Scholar 

  7. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, pp. 1779–1786.

    Article  CAS  Google Scholar 

  8. Yi, H.C. and Moore, J.J., Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials, J. Mater. Sci., 1990, vol. 25, pp. 1159–1168.

    Article  CAS  Google Scholar 

  9. Subrahmanyam, J. and Vijayakumar, M., Self-propagating high-temperature synthesis, J. Mater. Sci., 1992, vol. 27, pp. 6249–6273.

    Article  CAS  Google Scholar 

  10. Munir, Z.A. and Anselmi-Tamburini, U., Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Mater. Sci. Rep., 1989, vol. 3, pp. 277–365.

    Article  CAS  Google Scholar 

  11. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.

    Article  CAS  Google Scholar 

  12. Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., Combustion synthesis in nanostructured reactive systems, Adv. Powder Technol., 2015, vol. 26, pp. 954–976.

    Article  CAS  Google Scholar 

  13. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, pp. 203–239.

    Article  CAS  Google Scholar 

  14. Nersisyan, H.H., Lee, J.H., Ding, J.-R., Kim, K.-S., Manukyan, K.V., and Mukasyan, A.S., Combustion synthesis of zero-, one-, two-, and three-dimensional nanostructures: Current trends and future perspectives, Prog. Energy Combust. Sci., 2017, vol. 63, pp. 79–118.

    Article  Google Scholar 

  15. Xanthopoulou, G., Catalytic properties of the SHS products: Review, Adv. Sci. Technol., 2010, vol. 63, pp. 287–296.

    Article  CAS  Google Scholar 

  16. Patil, K.C., Aruna, S.T., and Ekabaram, S., Combustion synthesis, Curr. Opin. Solid State Mater. Sci., 1997, vol. 2, pp. 158–165.

    Article  CAS  Google Scholar 

  17. Patil, K.C., Aruna, S.T., and Mimani, T., Combustion synthesis: An update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, pp. 507–512.

    Article  CAS  Google Scholar 

  18. Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle α-Al2O3 and related oxide materials, Mater. Lett., 1988, vol. 6, pp. 427–432.

    Article  CAS  Google Scholar 

  19. Thoda, O., Xanthopoulou, G., Vekinis, G., and Chroneos, A., Review of recent studies on solution combustion synthesis of nanostructured catalysts, Adv. Eng. Mater., 2018, vol. 20, article 1800047.

  20. Specchia, S., Ercolino, G., Karimi, S., Italiano, C., and Vita, A., Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, pp. 166–186.

    Article  Google Scholar 

  21. Bera, P. and Aruna, S.T., Solution combustion synthesis, characterization and catalytic properties of oxide materials, in Catalysis: Applications in Chemical Industry, Energy Development, and Environment Protection, Sels, B. and de Voorde, M.V., Eds., Weinheim: Wiley-VCH, 2017, ch. 5, pp. 91–117.

    Google Scholar 

  22. Patil, K.C., Aruna, S.T., Bera, P., and Hegde, M.S., Nanomaterials in environment protection and remediation, in Advanced Technologies Based on Self-propagating and Mechanochemical Reactions for Environmental Protection, Cao, G., Delogu, F., and Orrù, R., Eds., Trivandrum: Research Signpost, 2003, ch. 5, pp. 71–81.

    Google Scholar 

  23. Alves, A.K., Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials, New York: Springer, 2013, ch. 2, pp. 11–22.

    Book  Google Scholar 

  24. González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties, and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A, 2013, vol. 452, pp. 117–131.

    Article  CAS  Google Scholar 

  25. Lackner, M., Ed., Combustion Synthesis: Novel Routes to Novel Materials, Sharjah: Bentham Science Publishers, 2010.

    Google Scholar 

  26. Rajeshwar, K. and de Tacconi, N.R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev., 2009, vol. 38, pp. 1984–1998.

    Article  CAS  Google Scholar 

  27. Jain, S.R., Adiga, K.C., and Verneker, V.R.P., A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame, 1981, vol. 40, pp. 71–79.

    Article  CAS  Google Scholar 

  28. Ramesh, S., Manoharan, S. S., Hegde, M.S., and Patil, K.C., Catalytic oxidation of ammonia to nitric oxide over La2MO4 (M = Co, Ni, Cu) oxides, J. Catal., 1995, vol. 157, pp. 749–751.

    Article  CAS  Google Scholar 

  29. Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation, J. Catal., 2000, vol. 196, pp. 293–301.

    Article  CAS  Google Scholar 

  30. Bera, P., Patil, K.C., Jayaram, V., Hegde, M.S., and Subbanna, G.N., Combustion synthesis of nanometal particles supported on α-Al2O3: CO oxidation and NO reduction catalysts, J. Mater. Chem., 1999, vol. 9, pp. 1801–1806.

    Article  CAS  Google Scholar 

  31. Bera, P., Gayen, A., Hegde, M. S., Lalla, N.P., Spadaro, L., Frusteri, F., and Arena, F., Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation, J. Phys. Chem. B, 2003, vol. 107, pp. 6122–6130.

    Article  CAS  Google Scholar 

  32. Bera, P., Priolkar, K.R., Gayen, A., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Jayaram, V., and Subbanna, G.N., Ionic dispersion of Pt over CeO2 by the combustion method: Structural investigation by XRD, TEM, XPS, and EXAFS, Chem. Mater., 2003, vol. 15, pp. 2049–2060.

    Article  CAS  Google Scholar 

  33. Priolkar, K.R., Bera, P., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., and Lalla, N.P., Formation of Ce1−xPdx0O2−δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation, Chem. Mater., 2002, vol. 14, pp. 2120–2128.

    Article  CAS  Google Scholar 

  34. Gayen, A., Priolkar, K.R., Sarode, P.R., Jayaram, V., Hegde, M.S., Subbanna, G.N., and Emura, S., Ce1−xRhxO2−δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS, Chem. Mater., 2004, vol. 16, pp. 2317–2328.

    Article  CAS  Google Scholar 

  35. Bera, P., Patil, K.C., and Hegde, M.S., NO reduction, CO and hydrocarbon oxidation over combustion synthesized Ag/CeO2 catalyst. Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 3715–3719.

    Article  CAS  Google Scholar 

  36. Bera, P. and Hegde, M.S., Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst, Catal. Lett., 2002, vol. 79, pp. 75–81.

    Article  CAS  Google Scholar 

  37. Baidya, T., Gayen, A., Hegde, M. S., Ravishankar, N., and Dupont, L., Enhanced reducibility of Ce1−xTixO2 compared to that of CeO2 and higher redox catalytic activity of Ce1−x−y Ti x Pt yO2−δ compared to that of Ce1−xPtxO2−δ, J. Phys. Chem. B, 2006, vol. 110, pp. 5262–5272.

    Article  CAS  Google Scholar 

  38. Baidya, T., Marimuthu, A., Hegde, M.S., Ravishankar, N., and Madras, G., Higher catalytic activity of nano-Ce1−x−yTixPdyO2−δ compared to nano-Ce1−xPdxO2−δ for CO oxidation and N2O and NO reduction by CO: Role of oxide ion vacancy, J. Phys. Chem. C, 2007, vol. 111, pp. 830–839.

    Article  CAS  Google Scholar 

  39. Baidya, T., Gupta, A., Deshpandey, P.A., Madras, G., and Hegde, M.S., High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1−xSnxO2 and Ce0.78Sn0.2Pd0.02O2−δ, J. Phys. Chem. C, 2009, vol. 113, pp. 4059–4068.

    Article  CAS  Google Scholar 

  40. Gupta, A., Kumar, A., Waghmare, U.V., and Hegde, M.S., Origin of activation of lattice oxygen and synergistic interaction in bimetal-ionic Ce0.89Fe0.1Pd0.01O2−δ catalyst, Chem. Mater., 2009, vol. 21, pp. 4880–4891.

    Article  CAS  Google Scholar 

  41. Baidya, T., Dutta, G., Hegde, M.S., and Waghmare, U.V., Noble metal ionic catalysts: Correlation of increase in CO oxidation activity with increasing effective charge on Pd ion in Pd ion substituted Ce1−xMxO2−δ (M = Ti, Zr, and Hf), Dalton Trans., 2009, vol. 38, pp. 455–464.

    Article  Google Scholar 

  42. Roy, S., Marimuthu, A., Hegde, M.S., and Madras, G., High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99, Appl. Catal. B, 2007, vol. 73, pp. 300–310.

    Article  CAS  Google Scholar 

  43. Roy, S., Hegde, M. S., Ravishankar, N., and Madras, G., Creation of redox adsorption sites by Pd2+ ion substitution in nano TiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition, J. Phys. Chem. C, 2007, vol. 111, pp. 8153–8160.

    Article  CAS  Google Scholar 

  44. Roy, S., Hegde, M.S., Sharma, S., Lalla, N.P., Marimuthu, A., and Madras, G., Low temperature NOx and N2O reduction by H2: Mechanism and development of new nano-catalysts, Appl. Catal. B, 2008, vol. 84, pp. 341–350.

    Article  CAS  Google Scholar 

  45. Mukri, B.D., Dutta, G., Waghmare, U.V., and Hegde, M.S., Activation of lattice oxygen of TiO2 by Pd2+ ion: Correlation of low-temperature CO and hydrocarbon oxidation with structure of Ti1−xPdxO2−x (x = 0.01–0.03), Chem. Mater., 2012, vol. 24, pp. 4491–4502.

    Article  CAS  Google Scholar 

  46. Mukri, B.D., Waghmare, U.V., and Hegde, M.S., Pt ion-doped TiO2: High catalytic activity of Pt2+ with oxide ion vacancy in Ti 4+1-x Pt 2+x O2-x compared to Pt4+ Ti 4+1-x Pt 2+x O2, Chem. Mater., 2013, vol. 25, pp. 3822–3833.

    Article  CAS  Google Scholar 

  47. Bera, P., Aruna, S.T., Patil, K.C., and Hegde, M.S., Studies on Cu/CeO2: A new NO reduction catalyst, J. Catal., 1999, vol. 186, pp. 36–44.

    Article  CAS  Google Scholar 

  48. Bera, P., Priolkar, K.R., Sarode, P. R., Hegde, M. S., Emura, S., Kumashiro, R., and Lalla, N.P., Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: Formation of a Ce1−xCuxO2−δ solid solution, Chem. Mater., 2002, vol. 14, pp. 3591–3601.

    Article  CAS  Google Scholar 

  49. Roy, S., Viswanath, B., Hegde, M.S., and Madras, G., Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2−δ (M = Cr, Mn, Fe, Co, Cu), J. Phys. Chem. C, 2008, vol. 112, pp. 6002–6012.

    Article  CAS  Google Scholar 

  50. Nagaveni, K. Hegde, M.S., and Madras, G., Structure and photocatalytic activity of Ti1−xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 2004, vol. 108, pp. 20204–20212.

    Article  CAS  Google Scholar 

  51. Hedge, M. S. and Bera, P., Noble metal ion substituted CeO2 catalysts: Electronic interaction between noble metal ions and CeO2 lattice, Catal. Today, 2015, vol. 253, pp. 40–50.

    Article  CAS  Google Scholar 

  52. Bera, P. and Hedge, M.S., Noble metal ions in CeO2 and TiO2: Synthesis, structure and catalytic properties, RSC Adv., 2015, vol. 5, pp. 94949–94979.

    Article  CAS  Google Scholar 

  53. Hegde, M.S., Madras, G., and Patil, K.C., Noble metal ionic catalysts, Acc. Chem. Res., 2009, vol. 42, pp. 704–712.

    Article  CAS  Google Scholar 

  54. Zhao, Q, Yan, Z., Chen, C., and Chen, J., Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond, Chem. Rev., 2017, vol. 117, pp. 10121–10211.

    Article  CAS  Google Scholar 

  55. Chuang, K.-H., Chen, B.-N., and Wey, M.-Y., Enrichment of hydrogen production from biomass-gasification-derived syngas over spinel-type MAl2O4-supported nickel catalysts, Energy Technol., 2018, vol. 6, pp. 318–325.

    Article  CAS  Google Scholar 

  56. Sumathi, S. and Lakshmipriya, V., Structural, magnetic, electrical and catalytic activity of copper and bismuth co-substituted cobalt ferrite nanoparticles, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, pp. 2795–2802.

    CAS  Google Scholar 

  57. Novikov, V., Xanthopoulou, G., Knysh, Yu. and Amosov, A.P., Solution combustion synthesis of nanoscale Cu-Cr-O spinels: Mechanism, properties, and catalytic activity in CO oxidation, Ceram. Int., 2017, vol. 43, pp. 11733–11742.

    Article  CAS  Google Scholar 

  58. Ercolino, G., Stelmachowski, P., Kotarba, A., and Specchia, S., Reactivity of mixed iron-cobalt spinels in the lean methane combustion, Top. Catal., 2017, vol. 60, pp. 1370–1379.

    Article  CAS  Google Scholar 

  59. Ercolino, G., Grodzka, A., Grzybek, G., Stelmachowski, P., Specchia, S., and Kotarba, A., The effect of the preparation method of Pd-doped cobalt spinel on the catalytic activity in methane oxidation under lean fuel conditions, Top. Catal., 2017, vol. 60, pp. 333–341.

    Article  CAS  Google Scholar 

  60. Ercolino, G., Grzybek, G., Stelmachowski, P., Specchia, S., Kotarba, A., and Specchia, V., Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions, Catal. Today, 2015, vol. 257, pp. 66–71.

    Article  CAS  Google Scholar 

  61. Maiti, S., Llorca, J., Dominguez, M., Colussi, S., Trovarelli, A., Priolkar, K. R., Aquilanti, G., and Gayen A., Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue, J. Power Sources, 2016, vol. 304, pp. 319–331.

    Article  CAS  Google Scholar 

  62. Fino, D., Russo, N., Saracco, G., and Specchia, V., Removal of NOx and diesel soot over catalytic traps based on spinel-type oxides, Powder Technol., 2008, vol. 180, pp. 74–78.

    Article  CAS  Google Scholar 

  63. Fino, D., Russo, N., Saracco, G., and Specchia, V., Catalytic removal of NOx and diesel soot over nano-structured spinel-type oxides, J. Catal., 2006, vol. 242, pp. 38–47.

    Article  CAS  Google Scholar 

  64. Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Steam reforming of methanol over copper-manganese spinel oxide catalysts, Catal. Commun., 2005, vol. 6, pp. 497–501.

    Article  CAS  Google Scholar 

  65. Prakash, A.S., Bera, P., Khadar, A.M.A, and Hegde, M.S., Cu-substituted MnCuxAl2−xO4: A new catalyst for NO reduction and oxidation of CO, NH3, CH4 and C3H8, Indian J. Chem., 2003, vol. 42A, pp. 1581–1589.

    CAS  Google Scholar 

  66. Parravano, G., Ferroelectric transitions and heterogeneous catalysis, J. Chem. Phys., 1952, vol. 20, pp. 342–343.

    Article  CAS  Google Scholar 

  67. Parravano, G., Catalytic activity of lanthanum and strontium manganite, J. Am. Chem. Soc., 1953, vol. 75, pp. 1497–1498.

    Article  CAS  Google Scholar 

  68. Meadowcroft, D.B., Low-cost oxygen electrode material, Nature, 1970, vol. 226, pp. 847–848.

    Article  CAS  Google Scholar 

  69. Voorhoeve, R.J.H., Johnson, D.W., Jr., Remeika, J.P., and Gallagher, P.K., Perovskite oxides: Materials science in catalysis, Science, 1977, vol. 195, pp. 827–833.

    Article  CAS  Google Scholar 

  70. Libby, W.F., Promising catalyst for auto exhaust, Science, 1971, vol. 171, pp. 499–500.

    Article  CAS  Google Scholar 

  71. Voorhoeve, R.J.H., Remeika, J.P., Freeland, P.E., and Matthais, B.T., Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust, Science, 1972, vol. 177, pp. 353–354.

    Article  CAS  Google Scholar 

  72. Voorhoeve, R.J.H., Remeika, J. P., and Johnson, D.W., Jr., Rare-earth manganites: Catalysts with low ammonia yield in the reduction of nitrogen oxides, Science, 1973, vol. 180, pp. 62–64.

    Article  CAS  Google Scholar 

  73. Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., and Alamdari, H., Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality, Chem. Rev., 2014, vol. 114, pp. 10292–10368.

    Article  CAS  Google Scholar 

  74. Zhu, H., Zhang, P., and Dai, S., Recent advances of lanthanum-based perovskite oxides for catalysis, ACS Catal., 2015, vol. 5, pp. 6370–6385.

    Article  CAS  Google Scholar 

  75. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., and Li, J., Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis, ACS Catal., 2014, vol. 4, pp. 2917–2940.

    Article  CAS  Google Scholar 

  76. Peña, M. A. and Fierro, J. L. G., Chemical structures and performance of perovskite oxides, Chem. Rev., 2001, vol. 101, pp. 1981–2017.

    Article  CAS  Google Scholar 

  77. Fraga, M. A., Pereira, R. A., and Greca, M. C., Combustion synthesis as a preparation method of perovskites with cerium for methane oxidation, Mater. Sci. Forum, 2016, vol. 530–531, pp. 696–701.

    Google Scholar 

  78. Mishra, A. and Prasad, R., Effect of preparation method and calcination temperature on LaCoO3 perovskite catalyst for diesel soot oxidation, Can. Chem. Trans., 2015, vol. 3, pp. 95–107.

    Google Scholar 

  79. Najjar, H., Batis, H., Lamonier, J.-F., Mentré, O., and Giraudon, J.-M., Effect of praseodymium and europium doping in La1−xLnxMnO3 + δ (Ln: Pr and Eu) perovskite catalysts for total methane oxidation, Appl. Catal. A, 2014, vol. 469, pp. 98–107.

    Article  CAS  Google Scholar 

  80. Bensaid, S., Blengini, G.A., Fino, D., and Russo, N., Diesel soot combustion with A1-xA x B1-yB y O3±δ perovskite catalysts, Chem. Eng. Commun., 2014, vol. 201, pp. 1327–1339.

    Article  CAS  Google Scholar 

  81. Lu, Y., Eyssler, A., Otal, E. H., Matam, S. K., Brunko, O., Weidenkaff, A., and Ferri, D., Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation, Catal. Today, 2013, vol. 208, pp. 42–47.

    Article  CAS  Google Scholar 

  82. Liu, W., Laitao, and Wu, Y., Effect of organic fuels on catalytic properties of La0.8Sr0.2O3 with large surface area, Indian J. Chem. A, 2008, vol. 47, pp. 194–198.

    Google Scholar 

  83. Fino, D., Russo, N., Saracco, G., and Specchia, V., Supported Pd-perovskite catalyst for CNG engines’ exhaust gas treatment, Prog. Solid State Chem., 2007, vol. 35, pp. 501–511.

    Article  CAS  Google Scholar 

  84. Russo, N., Fino, D., Saracco, G., and Specchia, V., Studies on the redox properties of chromite perovskite catalysts for soot combustion, J. Catal., 2005, vol. 229, pp. 459–469.

    Article  CAS  Google Scholar 

  85. Camacho, Y. S. M., Bensaid, S., Lorentzou, Russo, N., and Fino, D., Structured catalytic reactor for soot abatement in a reducing atmosphere, Fuel Process. Technol., 2017, vol. 167, pp. 462–473.

    Article  CAS  Google Scholar 

  86. Draskovic, T. I. and Wu, Y., Electrocatalytic properties of cuprous delafossite oxides for alkaline oxygen reduction reaction, ChemCatChem, 2017, vol. 9, pp. 3837–3842.

    Article  CAS  Google Scholar 

  87. Wei, W., Jichen, Z., Jing, X., and Dabing, L., Catalytic removal of PM by Li-Co delafossite catalysts, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2015, vol. 30, pp. 433–435.

    Article  CAS  Google Scholar 

  88. Bensaid, S. and Russo N., Low temperature DPF regeneration by delafossite catalysts, Catal. Today, 2011, vol. 176, pp. 417–423.

    Article  CAS  Google Scholar 

  89. Ketir, W., Bouguelia, A., and Trari, M., Visible light induced NO2 removal over CuCrO2 catalyst, Water Air Soil Pollut., 2009, vol. 199, pp. 115–122.

    Article  CAS  Google Scholar 

  90. Kameoka, S., Okada, M., and Tsai, A.P., Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium, Catal. Lett., 2008, vol. 120, pp. 252–256.

    Article  CAS  Google Scholar 

  91. Fino, D., Cauda, E., Mescia, D., Russo, N., Saracco, G., and Specchia, V., LiCoO2 catalyst for diesel particulate abatement, Catal. Today, 2007, vol. 119, pp. 257–261.

    Article  CAS  Google Scholar 

  92. Bera, P. and Hegde, M.S., Recent advances in auto exhaust catalysis, J. Indian Inst. Sci., 2010, vol. 90, pp. 299–325.

    CAS  Google Scholar 

  93. Bera, P. and Hegde, M.S., NO reduction over noble metal ionic catalysts, Catal. Surv. Asia, 2011, vol. 15, pp. 181–199.

    Article  CAS  Google Scholar 

  94. Farrauto, R.J. and Heck, R.M., Catalytic converters: State of art and perspectives, Catal. Today, 1999, vol. 51, pp. 351–360.

    Article  CAS  Google Scholar 

  95. Fu, M., Li, C., Lu, P., Qu, L., Zhang, M., Zhou, Y., Yu, M., and Fang, Y., A review on selective catalytic reduction of NOx by supported catalysts at 100–300°C: Catalysts, mechanism, kinetics, Catal. Sci. Technol., 2014, vol. 4, pp. 14–25.

    Article  CAS  Google Scholar 

  96. Fino, D., Bensaid, S., Piumetti, M., and Russo, N., A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: From powder catalysts to structured reactors, Appl. Catal. A, 2016, vol. 509, pp. 75–96.

    Article  CAS  Google Scholar 

  97. Dhal, G. C., Mohan, D., and Prasad, R., Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: An overview, Catal. Sci. Technol., 2017, vol. 7, pp. 1803–1825.

    Article  CAS  Google Scholar 

  98. Gayen, A., Baidya, T., Ramesh, G.S., Srihari, R., and Hegde, M.S., Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts Ce1−xy(La/Y)xPtyO2−δ, J. Chem. Sci., 2006, vol. 118, pp. 47–55.

    Article  CAS  Google Scholar 

  99. Gayen, A., Baidya, T., Biswas, K., Roy, S., and Hegde, M.S., Synthesis, structure and three way catalytic activity of Ce1−xPtx /2Rhx /2O2−δ (x = 0.01 and 0.02) nanocrystallites: Synergistic effect in bimetal ionic catalysts, Appl. Catal. A, 2006, vol. 315, pp. 135–146.

    Article  CAS  Google Scholar 

  100. Singhania, A. and Gupta, S.M., Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion, Beilstein J. Nanotechnol., 2017, vol. 8, pp. 1546–1552.

    Article  CAS  Google Scholar 

  101. Singhania, A. and Gupta, S.M., Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation, Beilstein J. Nanotechnol., 2017, vol. 8, pp. 264–271.

    Article  CAS  Google Scholar 

  102. Morfin, F., Nguyen, T.-S., Rousset, J.-L., and Piccolo, L., Synergy between hydrogen and ceria in Pt-catalyzed CO oxidation: An investigation on Pt-CeO2 catalysts synthesized by solution combustion, Appl. Catal. B, 2016, vol. 197, pp. 2–13.

    Article  CAS  Google Scholar 

  103. Kaftan, A., Kollhoff, F., Nguyen, T.-S., Piccolo, L., Laurin, M., and Libuda, J., Sensitivity of CO oxidation toward metal oxidation state in ceria-supported catalysts: An operando DRIFTS-MS study, Catal. Sci. Technol., 2016, vol. 6, pp. 818–828.

    Article  CAS  Google Scholar 

  104. Voskanyan, A.A. and Chan, K.Y., Solution combustion synthesis using furfuryl alcohol as a fuel and a combustible solvent, J. Exp. Nanosci., 2015, vol. 10, pp. 466–475.

    Article  CAS  Google Scholar 

  105. Baidya, T. and Bera, P., Investigation of support effect on CO adsorption and CO + O2 reaction over Ce1@#x−yMxCuyO2−δ (M = Zr, Hf and Th) catalysts by in situ DRIFTS, Catal. Struct. React., 2015, vol. 1, pp. 110–119.

    Article  Google Scholar 

  106. Piumetti M., Bensaid S., Andana T., Russo N., Pirone, R., and Fino, D., Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: From powder catalysts to structured reactors, Appl. Catal. B, 2017, vol. 205, pp. 455–468.

    Article  CAS  Google Scholar 

  107. Piumetti, M., Andana, T., Bensaid, S., Fino, D., Russo, N., and Pirone, R., Ceria-based nanomaterials as catalysts for CO oxidation and soot combustion: Effect of Zr-Pr doping and structural properties on the catalytic activity, AIChE J., 2016, vol. 63, pp. 216–225.

    Article  CAS  Google Scholar 

  108. Piumetti, M., Andana, T., Bensaid, S., Russo, N., Fino, D., and Pirone, R., Study on the CO oxidation over ceria-based nanocatalysts, Nanoscale Res. Lett., 2016, vol. 11, article 165.

  109. Piumetti, M., Bensaid, S., Fino, D., and Russo, N., Nanostructured ceria-zirconia catalysts for CO oxidation: Study on surface properties and reactivity, Appl. Catal. B, 2016, vol. 197, pp. 35–46.

    Article  CAS  Google Scholar 

  110. Cwele, T., Mahadevaiah N., Singh S., and Fried-rich, H.B., Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.9Co0.1O2−δ) catalyst in total and preferential CO oxidation, Appl. Catal. B, 2016, vol. 182, pp. 1–14.

    Article  CAS  Google Scholar 

  111. Shinde, V.M. and Madras, G., Kinetics of carbon monoxide oxidation with Sn0.95Cu0.05O2−δ (M = Cu, Fe, Mn, Co) catalysts, Catal. Sci. Technol., 2012, vol. 2, pp. 437–446.

    Article  CAS  Google Scholar 

  112. Prasad, D. H., Park, S. Y., Ji, H.-I., Kim, H.-R., Son, J.-W., Kim, B.-K., Lee, H.-W., and Lee, J.-H., Structural characterization and catalytic activity of Ce0.65Zr0.25RE0.1O2−δ nanocrystalline powders synthesized by the glycine—nitrate process, J. Phys. Chem. C, 2012, vol. 116, pp. 3467–3476.

    Article  CAS  Google Scholar 

  113. Baidya, T., Murayama, T., Bera, P., Safonova, O. V., Steiger, P., Katiyar, N. K., Biswas, K., and Haruta, M., Low-temperature CO oxidation over combustion made Fe and Cr doped Co3O4 catalysts: Role of dopant’s nature toward achieving superior catalytic activity and stability, J. Phys. Chem. C, 2017, vol. 121, pp. 15256–15265.

    Article  CAS  Google Scholar 

  114. Roy, S. and Hegde, M.S., Pd ion substituted CeO2: A superior de-NOx catalyst to Pt or Rh metal ion doped ceria, Catal. Commun., 2008, vol. 9, pp. 811–815.

    Article  CAS  Google Scholar 

  115. Baidya, T., Bera, P., Mukri, B.D., Parida, S. K., Kröcher, O., Elsener, M., and Hegde, M.S., DRIFTS studies on CO and NO adsorption and NO + CO reaction over Pd2+-substituted CeO2 and Ce0.75Sn0.25O2 catalysts, J. Catal., 2013, vol. 303, pp. 117–129.

    Article  CAS  Google Scholar 

  116. Roy, S., Marimuthu, A., Hegde, M. S., and Madras, G., NO reduction by H2 over nano-Ce0.98Pd0.02O2−δ, Catal. Commun., 2008, vol. 9, pp. 101–105.

    Article  CAS  Google Scholar 

  117. Roy S., Marimuthu, A., Deshpande, P.A., Hegde, M.S., and Madras G., Selective catalytic reduction of NOx: Mechanistic perspectives on the role of base metal and noble metal ion substitution, Ind. Eng. Chem. Res., 2008, vol. 47, pp. 9240–9247.

    Article  CAS  Google Scholar 

  118. Guan, B., Lin, H., Zhu, L., and Huang, Z., Selective catalytic reduction of NOx with NH3 over Mn and Ce substitution Ti0.9V0.1O2−δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method, J. Phys. Chem. C, 2011, vol. 115, pp. 12850–12863.

    Article  CAS  Google Scholar 

  119. Guan, B., Lin, H., Zhu, L., Tian, B., and Huang, Z., Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0.9Ce0.05V0.05O2−δ nanocomposites catalysts prepared by solution combustion route, Chem. Eng. J., 2012, vol. 181–182, pp. 307–322.

    Article  CAS  Google Scholar 

  120. Chen, T., Lin, H., Cao, Q., and Huang, Z., Solution combustion synthesis of Ti0.75Ce0.15Cu0.05W0.05O2−δ for low temperature selective catalytic reduction of NO, RSC Adv., 2014, vol 4, pp. 63909–63916.

  121. Kong, Z., Wang, C., Ding, Z., Chen, Y., and Zhang, Z., Enhanced activity of MnxW0.05Ti0.95−xO2−δ for selective catalytic reduction of NOx with ammonia by self-propagating high-temperature synthesis, Catal. Commun., 2015, vol. 64, pp. 27–31.

    Article  CAS  Google Scholar 

  122. Andreoli, S., Deorsola, F. A., Galletti, C., and Pirone, R., Nanostructured MnOx catalysts for low-temperature NOx SCR., Chem. Eng. J., 2015, vol. 278, pp. 174–182.

    Article  CAS  Google Scholar 

  123. Deorsola, A., Andreoli, S., Armandi, M., Bonelli, B., and Pirone, R., Unsupported nanostructured Mn oxides obtained by solution combustion synthesis: Textural and surface properties, and catalytic performance in NOx SCR at low temperature, Appl. Catal. A, 2016, vol. 522, pp. 120–129.

    Article  CAS  Google Scholar 

  124. Bera, P., Patil, K.C., and Hegde, M.S., Oxidation of CH4 and C3H8 over combustion synthesized nanosized metal particles supported on α-Al2O3, Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 373–378.

    Article  CAS  Google Scholar 

  125. Tang, W., Hu, Z., Wang, M., Stucky, G.D., Metiu, H., and McFarland, E.W., Methane complete and partial oxidation catalyzed by Pt-doped CeO2 J. Catal., 2010, vol. 273, pp. 125–137.

    Article  CAS  Google Scholar 

  126. Khader, M.M., Al-Marri, M. J., Ali, S., and Abdelmoneim, A.G., Active and stable methane oxidation nano-catalyst with highly-ionized palladium species prepared by solution combustion synthesis, Catalysts, 2018, vol. 8, article 66.

  127. Colussi, S., Gayen, A., Boaro, M., Llorca, J., and Trovarelli, A., Influence of different palladium precursors on the properties of solution-combustion-synthesized palladium ceria catalysts for methane combustion, ChemCatChem, 2015, vol. 7, pp. 2222–2229.

    Article  CAS  Google Scholar 

  128. Colussi, S., Gayen, A., Llorca, J., de Leitenburg, C., Dolcetti, G., and Trovarelli, A., Catalytic performance of solution combustion synthesized alumina- and ceria-supported Pt and Pd nanoparticles for the combustion of propane and dimethyl ether (DME), Ind. Eng. Chem. Res., 2012, vol. 51, pp. 7510–7517.

    Article  CAS  Google Scholar 

  129. Colussi, S., Gayen, A., Camellone, M. F., Boaro, M., Llorca, J., Fabris, S., and Trovarelli, A., Nanofaceted Pd-O sites in Pd-Ce surface superstructures: Enhanced activity in catalytic combustion of methane, Angew. Chem. Int. Ed., 2009, vol. 48, pp. 8481–8484.

    Article  CAS  Google Scholar 

  130. Spechhia, S., Finochhio, E., Busca, G., Palmisano, P., and Spechhia, V., Surface chemistry and reactivity of ceria-zirconia-supported palladium oxide catalysts for natural gas combustion, J. Catal., 2009, vol. 263, pp. 134–145.

    Article  CAS  Google Scholar 

  131. Derk, A.R., Li, B., Sharma, S., Moore, G.M., McFarland, E.W., and Metiu, H., Methane oxidation by lanthanum oxide doped with Cu, Zn, Mg,Fe, Nb, Ti, Zr, or Ta: The connection between the activation energy and the energy of oxygen-vacancy formation, Catal. Lett., 2013, vol. 143, pp. 406–410.

    Article  CAS  Google Scholar 

  132. Narayanappa, M., Dasireddy, V.D.B.C., and Friedrich, H.B., Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.9Co0.1O2−δ) catalysts, Appl. Catal. A, 2012, vol. 447–448, pp. 135–143.

    Article  CAS  Google Scholar 

  133. Zaza, F., Luisetto, I., Serra, E., Tuti, S., and Pasquali, M., Catalytic combustion of methane by perovskite-type oxide nanoparticles as pollution prevention strategy, AIP Conf. Proc., 2016, 1749, article 020003.

  134. Finochhio, E., Videla, A.H.A.M., and Spechhia, S., Surface chemistry and reactivity of Pd/BaCeO3 · 2ZrO2 catalyst upon sulphur hydrothermal treatment for the total oxidation of methane, Appl. Catal. A, 2015, vol. 505, pp. 183–192.

    Article  CAS  Google Scholar 

  135. Spechhia, S., Finochhio, E., Busca, G., Saracco, G., and Spechhia, V., Effect of S-compounds on Pd over LaMnO3 · 2ZrO2 and CeO2 · 2ZrO2 catalysts for CH4 combustion, Catal. Today, 2009, vol. 143, pp. 86–93.

    Article  CAS  Google Scholar 

  136. Sharma, S. and Hegde, M.S., Single step direct coating of 3-way catalysts on cordierite monolith by solution combustion method: High catalytic activity of Ce0.98Pd0.02O2−δ, Catal. Lett., 2006, vol. 112, pp. 69–75.

    Article  CAS  Google Scholar 

  137. Sharma, S., Hegde, M. S., Das, R. N., and Pandey, M., Hydrocarbon oxidation and three-way catalytic activity on a single step directly coated cordierite monolith: High catalytic activity of Ce0.98Pd0.02O2−δ, Appl. Catal. A, 2008, vol. 337, pp. 130–137.

    Article  CAS  Google Scholar 

  138. Mahammadunnisa, S.K., Akanksha, T., Krushnamurty, T.K., and Subrahmanyam, Ch., Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts, J. Chem. Sci., 2016, vol. 128, pp. 1795–1804.

    Article  CAS  Google Scholar 

  139. Yoshino, H., Ohnishi, C. H., Hosokawa, S., Wada, K., and Inoue, M., Optimised synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O, J. Mater. Sci., 2011, vol. 46, pp. 797–805.

    Article  CAS  Google Scholar 

  140. Russo, N., Mescia, D., Fino, D., Saracco, G., and Specchia, V., N2O decomposition over perovskite catalysts, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 4226–4231.

    Article  CAS  Google Scholar 

  141. Piumetti, M., Bensaid, S., Russo, N., and Fino, D., Investigations into nanostructured ceria-zirconia catalysts for soot combustion, Appl. Catal. B, 2016, vol. 180, pp. 271–282.

    Article  CAS  Google Scholar 

  142. Wang, Y., Wang, J., Chen, H., Yao, M., and Li, Y., Preparation and NOx-assisted soot oxidation activity of a CuO-CeO2 mixed oxide catalyst, Chem. Eng. Sci., 2015, vol. 135, pp. 294–300.

    Article  CAS  Google Scholar 

  143. Miceli, P., Bensaid, S., Russo, N., and Fino, D., CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact, Nanoscale Res. Lett., 2014, vol. 9, article 254.

  144. Bensaid, S., Russo, N., and Fino, D., CeO2 catalyst with fibrous morphology for soot oxidation: The importance of the soot-catalyst contact conditions, Catal. Today, 2013, vol. 216, pp. 57–63.

    Article  CAS  Google Scholar 

  145. Palmisano, P., Russo, N., Fino, P., Fino, D., and Badini, C., High catalytic activity of SCS-synthesized ceria towards diesel soot combustion, Appl. Catal. B, 2006, vol. 69, pp. 85–92.

    Article  CAS  Google Scholar 

  146. Yao, W., Wang, R., and Yang, X., LaCo1−xPdxO3 perovskite-type oxides: Synthesis, characterization and simultaneous removal of NOx and diesel soot, Catal. Lett., 2009, vol. 130, pp. 613–621.

    Article  CAS  Google Scholar 

  147. Zhang, Z., Zhang, Y., Mu, Z., Yu, P., Ni, X., Wang, S., and Zheng, L., Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines, Appl. Catal. B, 2007, vol. 76, pp. 335–347.

    Article  CAS  Google Scholar 

  148. Kamal, M.S., Razzak, S.A., and Hossain, M.M., Catalytic oxidation of volatile organic compounds (VOCs): A review, Atmosph. Environ., 2016, vol. 140, pp. 117–134.

    Article  CAS  Google Scholar 

  149. Everaert, K. and Baeyens, A., Catalytic combustion of volatile organic compounds, J. Hazard. Mater., 2004, vol. 109, pp. 113–139.

    Article  CAS  Google Scholar 

  150. Khan, F.I. and Ghoshal, A.K., Removal of volatile organic compounds from polluted air, J. Loss Prevent. Process. Ind., 2000, vol. 13, pp. 527–545.

    Article  Google Scholar 

  151. Hosseini, S. A., Catalytic oxidation of volatile organic compounds by using spinel mixed oxide catalyst: A review, Adv. Ceram. Sci. Eng., 2016, vol. 5, pp. 1–10.

    Article  Google Scholar 

  152. Li, W. B., Wang, J. X., and Gong, H., Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today, 2009, vol. 148, pp. 81–87.

    Article  CAS  Google Scholar 

  153. Liu, Y., Deng, J., Xie, S., Wang, Z., and Dai, H., Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts, Chin. J. Catal., 2016, vol. 37, pp. 1193–1205.

    Article  CAS  Google Scholar 

  154. Liotta, L.F., Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal. B, 2010, vol. 100, pp. 403–412.

    Article  CAS  Google Scholar 

  155. Piumetti, M., Fino, D., and Russo, N., Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B, 2015, vol. 163, pp. 277–287.

    Article  CAS  Google Scholar 

  156. Dutta, S., A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem., 2014, vol. 20, pp. 1148–1156.

    Article  CAS  Google Scholar 

  157. Turner, J.A., Sustainable hydrogen production, Science, 2004, vol. 305, pp. 972–974.

    Article  CAS  Google Scholar 

  158. Baruah, R., Dixit, M., Parejiya, A., Basarkar, P., Bhargav, A., and Sharma, S., Oxidative steam reforming of ethanol on rhodium catalyst. I: Spatially resolved steady-state experiments and microkinetic modeling, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 10184–10198.

    Article  CAS  Google Scholar 

  159. Amjad, U., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 15428–15436.

    Article  CAS  Google Scholar 

  160. Cao, L., Pan, L., Ni, C., Yuan, Z., and Wang, S., Autothermal reforming of methane over Rh/Ce0.5Zr0.5O2 catalyst: Effects of the crystal structure of the supports, Fuel Process. Technol., 2010, vol. 91, pp. 306–312.

    Article  CAS  Google Scholar 

  161. Avgouropoulos, G., Papavasiliou, J., and Ioannides, T., Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts, Chem. Eng. J., 2009, vol. 154, pp. 274–280.

    Article  CAS  Google Scholar 

  162. Schuyten, S., Dinka, P., Mukasyan, A.S., and Wolf, E.E., A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol, Catal. Lett., 2008, vol. 121, pp. 189–198.

    Article  CAS  Google Scholar 

  163. Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recuperet, V., Performance of Pt/CeO2 catalyst for propane oxidative steam reforming, Appl. Catal. A, 2006, vol. 306, pp. 68–77.

    Article  CAS  Google Scholar 

  164. Pino, L., Italiano, C., Vita, A., Laganà, M., and Recupero, V., Ce0.7La0.2Ni0.1O2−δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability, Appl. Catal. B, 2017, vol. 218, pp. 779–792.

    Article  CAS  Google Scholar 

  165. Iulianelli, A., Liguori, S., Vita, A., Italiano, C., Fabiano, C., Huang, Y., and Basile, A., The oncoming energy vector: Hydrogen produced in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO2 catalyst, Catal. Today, 2016, vol. 259, pp. 368–375.

    Article  CAS  Google Scholar 

  166. Postole, G., Nguyen, T.-S., Aouine, M., Gélin, P., Cardenas, L., and Piccolo, L., Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion, Appl. Catal. B, 2015, vol. 166–167, pp. 580–591.

    Article  CAS  Google Scholar 

  167. Das, D., Llorca, J., Dominguez, M., and Gayen, A., Single step combustion synthesized Cu/Ce0.8Zr0.2O2 for methanol steam reforming: Structural insights from in situ XPS and HRTEM studies, Catal. Struct. React., 2015, vol. 1, pp. 174–182.

    Article  Google Scholar 

  168. Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H., Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceram. Int., 2014, vol. 40, pp. 14177–14184.

    Article  CAS  Google Scholar 

  169. Roy, B., Martinez, U., Loganathan, K., Datye, A.K., and Leclerc, C.A., Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: I. Catalytic activity, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 8143–8153.

    Article  CAS  Google Scholar 

  170. Roy, B., Artyushkova, K., Pham, H. N., Li, L., Datye, A.K., and Leclerc, C.A., Effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: II. Characterization, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 18815–18826.

    Article  CAS  Google Scholar 

  171. Manfro, R.L., da Costa, A.F., Ribeiro, N.F.P., and Souza, M.M.V.M., Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2, Fuel Process. Technol., 2011, vol. 92, pp. 330–335.

    Article  CAS  Google Scholar 

  172. Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen, Appl. Catal. B, 2006, vol. 66, pp. 168–174.

    Article  CAS  Google Scholar 

  173. Villoria, J.A., Alvarez-Galvan, M.C., Al-Zahrani, S.M., Palmisano, P., Specchia, S., Specchia, V., Fierroa, J.L.G., and Navarro, R.M., Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: Influence of perovskite synthesis method on catalyst properties and performance, Appl. Catal. B, 2011, vol. 105, pp. 276–288.

    Article  CAS  Google Scholar 

  174. Sharma, S., Patil, B., Pathak, A., Ghosalkar, S., Mohanta, H.K., and Roy, B., Application of BICOVOX catalyst for hydrogen production from ethanol, Clean Technol. Environ. Policy, 2018, vol. 20, pp. 695–701.

    Article  CAS  Google Scholar 

  175. Pino, L., Recupero, V., Beninati, S., Shukla, A.K., Hegde, M.S., and Bera, P., Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles, Appl. Catal. A, 2002, vol. 225, pp. 63–75.

    Article  CAS  Google Scholar 

  176. Prasad, D.H., Jung, H.-Y., Jung, H.-G., Kim, B.-K., Lee, H.-W., and Lee, J.-H., Single step synthesis of nano-sized NiO-Ce0.75Zr0.25O2 composite powders by glycine nitrate process, Mater. Lett., 2008, vol. 62, pp. 587–590.

    Article  CAS  Google Scholar 

  177. Dixit, M., Menon, A., Baruah, R., Bhargav, A., and Sharma, S., Oxidative activation of methane on lanthanum oxide and nickel-lanthanum oxide catalysts, React. Kinet. Mech. Catal., 2015, vol. 115, pp. 611–624.

    Article  CAS  Google Scholar 

  178. Jyoti, S., Ashok, Ch., Srilatha, K., Patila, N., and Chakra, Ch.S., Hydrogen production from methane decomposition using nano metal oxides, Mater. Today: Proc., 2017, vol. 4, pp. 11679–11689.

    Google Scholar 

  179. Farrauto, R.J., Liu, Y., Ruettinger, W., Ilinich, O., Shore, L., and Giroux, T., Precious metal catalysts supported on ceramic and metal monolithic structures for hydrogen economy, Catal. Rev. Sci. Eng., 2007, vol. 49, pp. 141–196.

    Article  CAS  Google Scholar 

  180. Sharma, S., Deshpande, P.A., Hegde, M.S., and Madras, G., Non-deactivating nanosized ionic catalysts for water gas shift reaction, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 6535–6543.

    Article  CAS  Google Scholar 

  181. Deshpande, P.A., Hegde, M.S., and Madras, G., Pd and Pt ions as highly active sites for the water-gas shift reaction over combustion synthesized zirconia and zirconia-modified ceria, Appl. Catal. B, 2010, vol. 96, pp. 83–93.

    Article  CAS  Google Scholar 

  182. Gupta, A. and Hegde, M.S., Ce0.78Sn0.2Pt0.02O2−δ: A new non-deactivating catalyst for hydrogen production via water-gas shift reaction, Appl. Catal. B, 2010, vol. 99, 279–288.

    Article  CAS  Google Scholar 

  183. Mahadevaiah, N., Singh, P., Mukri, B. D., Parida, S.K., and Hegde, M.S., Ce0.67Fe0.33O2−δ and Ce0.65Fe0.33Pt0.02O2−δ: New water gas shift (WGS) catalysts, Appl. Catal. B, 2011, vol. 108–109, pp. 117–126.

    Article  CAS  Google Scholar 

  184. Deshpande, P.A., Hegde, M.S., and Madras, G., A mechanistic model for the water-gas shift reaction over noble metal substituted ceria, AIChE J., 2010, vol. 56, pp. 1315–1324.

    Article  CAS  Google Scholar 

  185. Bera, P., Malwadkar, S., Gayen, A., Satyanarayana, C.V.V., Rao, B.S., and Hegde, M.S., Low-temperature water gas shift reaction on combustion synthesized Ce1−xPtxO2−δ catalyst, Catal. Lett., 2004, vol. 96, pp. 213–219.

    Article  CAS  Google Scholar 

  186. Mandapaka, R. and Madras, G., Aluminium and rhodium co-doped ceria for water gas shift reaction and CO oxidation, Mol. Catal., 2018, vol. 451, pp. 4–12.

    Article  CAS  Google Scholar 

  187. Gayen, A., Boaro, M., de Leitenburg, C., Llorca, J., and Trovarelli, A., Activity, durability and microstructural characterization of ex-nitrate and ex-chloride Pt/Ce0.56Zr0.44O2 catalysts for low temperature water gas shift reaction, J. Catal., 2010, vol. 270, no. 2, pp. 285–298.

    Article  CAS  Google Scholar 

  188. Nguyen, T.-S., Morfin, F., Aouine, M., Bosselet, F., Rousset, J.-L., and Piccolo, L., Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria, Catal. Today, 2015, vol. 253, pp. 106–114.

    Article  CAS  Google Scholar 

  189. Sharma, S., Gupta, A., and Hegde, M.S., Pt2+ dispersed in Ce0.83Ti0.15O2−δ: Significant improvement in PROX activity by Ti substitution in CeO2 in hydrogen rich stream, Catal. Lett., 2010, vol. 134, pp. 330–336.

    Article  CAS  Google Scholar 

  190. Yan, C.-F., Chen, H., Hu, R.-R., Huang, S., Luo, W., Guo, C., Li, M., and Li, W., Synthesis of mesoporous Co-Ce oxides catalysts by glycine-nitrate combustion approach for CO preferential oxidation reaction in excess H2, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 18695–18701.

    Article  CAS  Google Scholar 

  191. Zeng, S., Su, H., Liu, Y., Wang, Y., and Wang, D., CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by in situ combustion synthesis method for preferential oxidation of carbon monoxide, J. Rare Earths, 2011, vol. 29, pp. 69–73.

    Article  CAS  Google Scholar 

  192. Avgouropoulos, G. and Ioannides, T., Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Appl. Catal. A, 2003, vol. 244, pp. 155–167.

    Article  CAS  Google Scholar 

  193. Avgouropoulos, G., Isotopic transient study of methanol decomposition over noble metal/ceria catalysts, Catal. Commun., 2009, vol. 10, pp. 682–686.

    Article  CAS  Google Scholar 

  194. Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S., Combustion synthesis of a nickel supported catalyst: Effect of metal distribution on the activity during ethanol decomposition, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 12004–12008.

    Article  CAS  Google Scholar 

  195. Kumar, A., Cross, A., Manukyan, K., Bhosale, R.R., van den Broeke, L.J.P., Miller, J.T., Mukasyan, A.S., and Wolf, E.E., Combustion synthesis of copper-nickel catalysts for hydrogen production from ethanol, Chem. Eng. J., 2015, vol. 278, pp. 46–54.

    Article  CAS  Google Scholar 

  196. Kumar, A., Ashok, A., Bhosale, R.R., Saleh, M.A.H., Almomani, F.A., Al-Marri, M., Khader, M.M., and Tarlochan, F., In situ DRIFTS studies on Cu, Ni and CuNi catalysts for ethanol decomposition reaction, Catal. Lett., 2016, vol. 146, pp. 778–787.

    Article  CAS  Google Scholar 

  197. Saeidi, S., Amin, N.A.S., and Rahimpour, M.R., Hydrogenation of CO2 to value-added products: A review and potential future developments, J. CO 2 Utilz., 2014, vol. 5, pp. 66–81.

    Article  CAS  Google Scholar 

  198. Jiang, Z., Xiao, T., Kuznetsov, V.L., and Edwards, P.P., Turing carbon dioxide into fuel, Phil. Trans. Roy. Soc., 2010, vol. 368, pp. 3343–3364.

    Article  CAS  Google Scholar 

  199. Wang, W., Wang, S., Ma, X., and Gong, J., Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 2011, vol. 40, pp. 3703–3727.

    Article  CAS  Google Scholar 

  200. Derk, A.R., Moore, G.M., Sharma, S., McFarland, E.W., and Metiu, H., Catalytic dry reforming of methane on ruthenium-doped ceria and ruthenium supported on ceria, Top. Catal., 2014, vol. 57, pp. 118–124.

    Article  CAS  Google Scholar 

  201. Upham, D.C., Derk, A.R., Sharma, S., Metiu, H., and McFarland, E.W., CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface, Catal. Sci. Technol., 2015, vol. 5, pp. 1783–1791.

    Article  CAS  Google Scholar 

  202. Sharma, S., Hu, Z., Zhang, P., McFarland, E.W., and Metiu, H., CO2 methanation by Ru-doped ceria, J. Catal., 2011, vol. 278, pp. 297–309.

    Article  CAS  Google Scholar 

  203. Sharma, S., Kumar, K.B.S., Chandnani, Y.M., Kumar, V.S.P., Gangwar, B.P., Singhal, A., and Deshpande, P.A., Mechanistic insights into CO2 methanation over Ru-substituted CeO2, J. Phys. Chem. C, 2016, vol. 120, pp. 14101–14112.

    Article  CAS  Google Scholar 

  204. Vita, A., Italiano, C., Pino, L., Frontera, P., Ferraroa, M., and Antonucci, V., Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation, Appl. Catal. B, 2018, vol. 226, pp. 384–395.

    Article  CAS  Google Scholar 

  205. Pandey, A., Jain, G., Vyas, D., Irusta, S., and Sharma, S., Non-reducible, basic La2O3 to reducible, acidic La2−xSbxO3 with significant oxygen storage capacity, lower band gap and effect on the catalytic activity, J. Phys. Chem. C, 2017, vol. 121, pp. 481–489.

    Article  CAS  Google Scholar 

  206. Gao, Y., Meng, F., Li, X., Wen, J. Z., and Li, Z., Factors controlling nanosized Ni-Al2O3 catalysts synthesized by solution combustion for slurry-phase CO methanation: The ratio of reducing valences to oxidizing valences in redox systems, Catal. Sci. Technol., 2016, vol. 6, pp. 7800–7811.

    Article  CAS  Google Scholar 

  207. Rievero-Mendoza, D.E., Stanley, J.N.G., Scott, J., and Aguey-Zinsou, K.-F., An alumina-supported Ni-La-based catalyst for producing synthetic natural gas, Catalysts, 2016, vol. 6, article 170.

  208. Guo, X., Mao, D., Lu, G., Wang, S., and Wu, G., Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation, J. Catal., 2010, vol. 271, pp. 178–185.

    Article  CAS  Google Scholar 

  209. Ghose, R., Hwang, H.T., and Varma, A., Oxidative coupling of methane using catalysts synthesized by solution combustion method, Appl. Catal. A, 2013, vol. 452, pp. 147–154.

    Article  CAS  Google Scholar 

  210. Ghose, R., Hwang, H.T., and Varma, A., Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies, Appl. Catal. A, 2014, vol. 472, pp. 39–46.

    Article  CAS  Google Scholar 

  211. Bera, P., Hegde, M.S., and Patil, K.C., Combustion synthesized Ce1−xPtxO2−δ (x = 0.005, 0.01 and 0.02; δ ∼ 0.07 and 0.1): A novel room-temperature H2-O2 recombination catalyst, Curr. Sci., 2001, vol. 80, pp. 1576–1578.

    CAS  Google Scholar 

  212. Sharma, S. and Hedge, M.S., Ti0.99Pd0.01O2−δ: A new Pt-free catalyst for high rates of H2 + O2 recombination with high CO tolerant capacity, Phys. Chem. Chem. Phys., 2009, vol. 10, pp. 637–640.

    Article  CAS  Google Scholar 

  213. Hariprakash, B., Bera, P., Martha, S.K., Gaffoor, S.A., Hegde, M.S., and Shukla, A.K., Ceria-supported platinum as hydrogen-oxygen recombinant catalyst for sealed lead-acid batteries, Electrochem. Solid-State Lett., 2001, vol. 4, pp. A23–A26.

    Article  CAS  Google Scholar 

  214. Deshpande, P.A. and Madras, G., Noble metal ionic sites for catalytic hydrogen combustion: Spectroscopic insights, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 708–718.

    Article  CAS  Google Scholar 

  215. Shinde, V.M. and Madras, G., Kinetic studies of ionic substituted copper catalysts for catalytic hydrogen combustion, Catal. Today, 2012, vol. 198, pp. 270–279.

    Article  CAS  Google Scholar 

  216. Thimmaraju, N., Shamshuddin, S.Z.M., Pratap, S.R., Raja, K., Shyamsundar, M., and Mohankumar, T.E., Simple but efficient synthesis of novel substituted benzimidazoles over ZrO2-Al2O3, Synth. Commun., 2016, vol. 46, pp. 1537–1559.

    Article  CAS  Google Scholar 

  217. Thimmaraju, N. and Shamshuddin, S.Z.M., Synthesis of 2,4,5-trisubstituted imidazoles, quinoxalines and 1,5-benzodiazepines over eco-friendly and highly efficient ZrO2-Al2O3 catalyst, RSC Adv., 2016, vol. 6, pp. 60231–60243.

    Article  CAS  Google Scholar 

  218. Wang, Y., Chen, Y., Yu, F., Pan, D., Fan, B., Ma, J., and Li, R., One-step synthesis of dimethyl ether from syngas on ordered mesoporous copper incorporated alumina, J. Energy Chem., 2016, vol. 25, pp. 775–781.

    Article  Google Scholar 

  219. Singh, A., Palakollu, V., Pandey, A., Kanvah, S., and Sharma, S., Green synthesis of 1,4-benzodiazepines over La2O3 and La(OH)3 catalysts: Possibility of Langmuir-Hinshelwood adsorption, RSC Adv., 2016, vol. 6, pp. 103455–103462.

    Article  CAS  Google Scholar 

  220. Gangwar, B. P., Palakollu, V., Singh, A., Kanvah, S., and Sharma, S., Combustion synthesized La2O3 and La(OH)3: Recyclable catalytic activity towards Knoevenagel and Hantzsch reactions, RSC Adv., 2014, vol. 4, pp. 55407–55416.

    Article  CAS  Google Scholar 

  221. Girish, Y.R., Kumar, K.S.S., Manasa, H.S., and Shashikanth, S., ZnO: An ecofriendly, green nanocatalyst for the synthesis of pyrazole derivatives under aqueous media, J. Chin. Chem. Soc., 2014, vol. 61, pp. 1175–1179.

    Article  CAS  Google Scholar 

  222. Bhojegowd, M.R.M., Siddaramanna, A.S., Thimmanna, C.G., and Pasha, M.A., Combustion derived nanocrystalline-ZrO2 and its catalytic activity for Biginelli condensation under microwave irradiation, Chin. J. Chem., 2011, vol. 29, pp. 1863–1868.

    Article  CAS  Google Scholar 

  223. Samantaray, S. and Mishra, B.G., Combustion synthesis, characterization and catalytic application of MoO3-ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones, J. Mol. Catal. A, 2011, vol. 339, pp. 92–98.

    Article  CAS  Google Scholar 

  224. Reddy, M.B.M., Ashoka, S., Chandrappa, G.T., and Pasha, M.A., Nano-MgO: An efficient catalyst for the synthesis of formamides from amines and formic acid under MWI, Catal. Lett., 2010, vol. 138, pp. 82–87.

    Article  CAS  Google Scholar 

  225. Thoda, O., Xanthopoulou, G., Vekinis, G., and Chroneos, A., Parametric optimization of solution combustion synthesis catalysts and their application for the aqueous hydrogenation of maleic acid, Catal. Lett., 2018, vol. 148, pp. 764–778.

    Article  CAS  Google Scholar 

  226. Padole, M.C., Gangwar, B.P., Pandey, A., Singhal, A., Sharma, S., and Deshpande, P.A, Adsorption of C2 gases over CeO2-based catalysts: Synergism of cationic sites and anionic vacancies, Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 14148–14159.

    Article  CAS  Google Scholar 

  227. Farahani, M.D., Valand, J., Mahomed, A.S., and Friedrich, H.B., A comparative study of NiO/Al2O3 catalysts prepared by different combustion techniques for octanal hydrogenation, Catal. Lett., 2016, vol. 146, pp. 2441–2449.

    Article  CAS  Google Scholar 

  228. Das, D., Pal, K., Llorca, J., Dominguez, M., Colussi, S., Trovarelli, A., and Gayen, A., Chemoselective hydrogenation of cinnamaldehyde at atmospheric pressure over combustion synthesized Pd catalysts, React. Kinet. Mech. Catal., 2017, vol. 122, pp. 135–153.

    Article  CAS  Google Scholar 

  229. Naveenkumar, A., Kuruva, P., Shivakumara, C., and Srilakshmi, C., Mixture of fuels approach for the synthesis of SrFeO3−δ nanocatalyst and its impact on the catalytic reduction of nitrobenzene, Inorg. Chem., 2014, vol. 53, pp. 12178–12185.

    Article  CAS  Google Scholar 

  230. Mistri, R., Llorca, J., Ray, B.C., and Gayen, A., Pd0.01Ru0.01Ce0.98O2−δ: A highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions, J. Mol. Catal. A, 2013, vol. 376, pp. 111–119.

    Article  CAS  Google Scholar 

  231. Nagaveni, K., Sivalingam, G., Gayen, A., Madras, G., and Hegde, M.S., Gas-phase hydrogenation of benzene to cyclohexane over combustion-synthesized Ce1−xPtxO2−s (x = 0.01, 0.02), Catal. Lett., 2003, vol. 88, pp. 73–81.

    Article  CAS  Google Scholar 

  232. Santander, J., López, E., Diez, A., Dennehy, M., Pedernera, M., and Tonetto, G., Ni-Nb mixed oxides: One-pot synthesis and catalytic activity of oxidative dehydrogenation of ethane, Chem. Eng. J., 2014, vol. 255, pp. 185–194.

    Article  CAS  Google Scholar 

  233. Mistri, R., Das, D., Llorca, J., Dominguez, M., Mandal, T.K., Mohanty, P., Ray, B.C., and Gayen, A., Selective liquid phase benzyl alcohol oxidation over Cu-loaded LaFeO3 perovskite, RSC Adv., 2016, vol. 6, pp. 4469–4477.

    Article  CAS  Google Scholar 

  234. Mistri, R., Rahaman, M., Llorca, J., Priolkar, K.R., Colussi, S., Ray, B.C., and Gayen, A., Liquid phase selective oxidation of benzene over nanostructured CuxCe1−xO2−δ (0.03 ≤ x ≤ 0.15), J. Mol. Catal. A, 2014, vol. 390, pp. 187–197.

    Article  CAS  Google Scholar 

  235. Mistri, R., Maiti, S., Llorca, J., Dominguez, M., Mandal, T. K., Mohanty, P., Ray, B.C., and Gayen, A., Copper ion substituted hercynite (Cu0.03Fe0.97Al2O4): A highly active catalyst for liquid phase oxidation of cyclohexane, Appl. Catal. A, 2014, vol. 485, pp. 40–50.

    Article  CAS  Google Scholar 

  236. Farin, B., Videla, A.H.A.M., Specchia, S., and Gaigneaux, E.M., Bismuth molybdates prepared by solution combustion synthesis for partial oxidation of propene, Catal. Today, 2015, vol. 257, pp. 11–17.

    Article  CAS  Google Scholar 

  237. Greca, M.C., Moraes, C., and Segadães, A.M., Palladium/alumina catalysts: Effect of the processing route on catalytic performance, Appl. Catal. A, 2001, vol. 216, pp. 267–276.

    Article  CAS  Google Scholar 

  238. Sun, H., Liang, H., Zhou, G., and Wang, S., Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation, J. Colloid Interface Sci., 2013, vol. 394, pp. 394–400.

    Article  CAS  Google Scholar 

  239. Liang, H., Ting, Y.Y., Sun, H., Ang, H.M., Tadé, M.O., and Wang, S., Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution, J. Colloid Interface Sci., 2012, vol. 372, pp. 58–62.

    Article  CAS  Google Scholar 

  240. Bera, P., Mitra, S., Sampath, S., and Hegde, M.S., Promoting effect of CeO2 in a Cu/CeO2 catalyst: Lowering of redox potentials of Cu species in the CeO2 matrix, Chem. Commun., 2001, 927–928.

  241. Sharma, S. and Hegde, M.S., Pt metal-CeO2 interaction: Direct observation of redox coupling between Pt0/Pt2+/Pt4+ and Ce4+/Ce3+ states in Ce0.98Pt0.02O2−δ catalyst by a combined electrochemical and X-ray photoelectron spectroscopy study, J. Chem. Phys., 2009, vol. 130, article 114706.

  242. Sharma, S., Mukri, B.D., and Hegde, M.S., Direct evidence of redox interaction between metal ion and support oxide in Ce0.98Pd0.02O2−δ by a combined electrochemical and XPS study, Dalton Trans., 2011, vol. 40, pp. 11480–11489.

    Article  CAS  Google Scholar 

  243. Bisht, A., Gangwar, B.P., Anupriya, T., and Sharma, S., Understanding the electrochemical differences of Pt doped and Pt supported over CeO2, J. Solid State Electrochem., 2014, vol. 18, pp. 197–206.

    Article  CAS  Google Scholar 

  244. Sharma, S., Singh, P., and Hegde, M.S., Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity, J. Solid State Electrochem., 2011, vol. 15, pp. 2185–2197.

    Article  CAS  Google Scholar 

  245. Chourashiya, M.G. and Urakawa, A., Solution combustion synthesis of highly dispersible and dispersed iridium oxide as an anode catalyst in PEM water electrolysis, J. Mater. Chem. A, 2017, vol. 5, pp. 4774–4778.

    Article  CAS  Google Scholar 

  246. Ashok, A., Kumar, A., Ponraj, J, Mansour, S. A., and Tarlochan, F., Single step synthesis of porous NiCoO2 for effective electrooxidation of glycerol in alkaline medium, J. Electrochem. Soc., 2018, vol. 165, pp. J3301–J3309.

    Article  CAS  Google Scholar 

  247. Singhal, A., Bisht, A., Kumar, A., and Sharma, S., One pot, rapid synthesis of Co3O4 by solution combustion method and its electrochemical properties in different electrolytes, J. Electroanal. Chem., 2016, vol. 776, pp. 152–161.

    Article  CAS  Google Scholar 

  248. Pandiarajan, T. and Ravichandran, S., Enhancing the electrocatalytic activity of manganese ferrite through cerium substitution for oxygen evolution in KOH solutions, RSC Adv., 2014, vol. 4, pp. 64364–64370.

    Article  CAS  Google Scholar 

  249. Ashok, A., Kumar, A., Bhosale, R. R., Almomani, F., Malik, S.S., Suslov, S., and Tarlochan, F., Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media, J. Electroanal. Chem., 2018, vol. 809, pp. 22–30.

    Article  CAS  Google Scholar 

  250. Giuliano, A., Carpanese, M. P., Clematis, D., Boaro, M., Pappacena, A., Deganello, F., Liotta, L.F., and Barbuccia, A., J. Electrochem. Soc., 2017, vol. 164, pp. F3114–F3122.

    Article  CAS  Google Scholar 

  251. Prakash, B.S., Bera, P., Kumar, S.S., and Aruna, S.T., Microstructure and electrical properties of plasma sprayed coatings from solution combustion synthesized Gd0.15Ce0.85O3−δ flowable powders, J. Eur. Ceram. Soc., 2017, vol. 37, pp. 271–279.

    Article  CAS  Google Scholar 

  252. Xu, X., Pan, Y., Zhou, W., Chen, Y., Zhang, Z., and Shao, Z., Toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: A case study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ, Electrochem. Acta, 2016, vol. 219, pp. 553–559.

    Article  CAS  Google Scholar 

  253. Deganello, F., Liotta, L.F., Leonardi, S.G., and Neri, G., Electrochemical properties of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide oxidation, Electrochem. Acta, 2016, vol. 190, pp. 939–947.

    Article  CAS  Google Scholar 

  254. Aliotta, C., Liotta, L. F., Deganello, F., La Parola, V., and Martorana, A, Direct methane oxidation on La1−xSrxCr1−yFeyO3−δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells, Appl. Catal. B, 2016, vol. 180, pp. 424–433.

    Article  CAS  Google Scholar 

  255. Aliotta, C., Liotta, L.F., La Parola, V., Martorana, A., Muccillo, E.N.S., Muccillo, R., and Deganello, F., Ceria-based electrolytes prepared by solution combustion synthesis: The role of fuel on the materials properties, Appl. Catal. B, 2016, vol. 197, pp. 14–22.

    Article  CAS  Google Scholar 

  256. Bisht, A., Zhang, P., Shivakumara, C., and Sharma, S., Pt doped and Pt supported La1−xSrxCoO3: Comparative activity of Pt4+ and Pt0 towards the CO poisoning effect in formic acid and methanol electro-oxidation, J. Phys. Chem. C, 2015, vol. 119, pp. 14126–14134.

    Article  CAS  Google Scholar 

  257. Kalubarme, R.S., Park, G.-E., Jung, K.-N., Shin, K.-H., Ryu, W.-H., and Park, C.-J., LaNixCo1−xO3−δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries, J. Electrochem. Soc., 2014, vol. 161, pp. A880–A889.

    Article  CAS  Google Scholar 

  258. Deganello, F., Liotta, L. F., Marci, G., Fabbri, E., and Traversa, E., Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: Exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials, Mater. Renew. Sustain. Energy, 2013, vol. 2, article 8.

  259. Zhu, C., Nobuta, A., Nakatsugawa, I., and Akiyama, T., Solution combustion synthesis of LaMO3 (M = Fe, Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 13238–13248.

    Article  CAS  Google Scholar 

  260. Lan, A. and Mukasyan, A.S., Perovskite-based catalysts for direct ethanol fuel cells, ECS Trans., 2007, vol. 2, pp. 1–10.

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Director, CSIR-NAL and Head, SED, CSIR-NAL for their support and encouragement. I also wish to thank Prof. K.C. Patil and Prof. M.S. Hegde, Indian Institute of Science, Bengaluru for introducing me to the areas of solution combustion synthesis and heterogeneous catalysis and for their constant mentorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasarathi Bera.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, P. Solution Combustion Synthesis as a Novel Route to Preparation of Catalysts. Int. J Self-Propag. High-Temp. Synth. 28, 77–109 (2019). https://doi.org/10.3103/S106138621902002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138621902002X

Navigation