Skip to main content
Log in

Leakage conduction behavior for top- and bottom-contact pentacene thin film transistors

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The leakage conduction mechanisms for top-contact and bottom-contact pentacene-based organic thin film transistors (OTFTs) are studied. OTFTs that use a bottom-contact design exhibit lower leakage conduction than those that use a top-contact design. For top-contact OTFTs, the dominant leakage conduction mechanism is via Schottky emission and the density of the leakage current increases significantly as the bias voltage increases. For bottom-contact OTFTs, the dominant leakage conduction mechanism is via displacement current. OTFTs that use a bottom-contact design exhibit lower leakage conduction than those that use a top-contact design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Sarma, D Saikia, K Konwar and B Baishya, Indian J. Phys.84 547 (2010)

    Article  ADS  Google Scholar 

  2. T Borthakur and R Sarma Indian J. Phys.91 263 (2017)

    Article  Google Scholar 

  3. Y J Lin, H Y Tsao and D S Liu J. Mater. Sci. Mater. Electron.26 2579 (2015)

    Article  Google Scholar 

  4. Y J Lin and Y C Lin Appl. Phys. Lett.105 023506 (2014)

    Article  ADS  Google Scholar 

  5. C D Dimitrakopoulo and P R L Malenfant Adv. Mater.14 99 (2000)

    Article  Google Scholar 

  6. W Brütting Physics of Organic Semiconductors (Weinheim: Wiley-VCH) (2005)

    Book  Google Scholar 

  7. H Klauk Organic Electronics (Weinheim: Wiley-VCH) (2006)

    Book  Google Scholar 

  8. K Hong, S Y Yang, C Yang, S H Kim, D Choi and C E Park Org. Electron.9 864 (2008)

    Article  Google Scholar 

  9. J H Cho, H Lee, M Hwang, H H Choi, W K Kim, J L Lee and K Cho Electrochem. Solid-State Lett.10 H156 (2007)

    Article  Google Scholar 

  10. D J Gundlach, L Zhou, J A Nichols, T N Jackson, P V Necliudov and M S Shur J. Appl. Phys.100 024509 (2006)

    Article  ADS  Google Scholar 

  11. R Matsubara, N Ohashi, M Sakai, K Kudo and M Nakamura Appl. Phys. Lett.92 242108 (2008)

    Article  ADS  Google Scholar 

  12. I Kymissis, C D Dimitrakopoulos and S Purushothaman IEEE Trans. Electron. Dev.48 1060 (2001)

    Article  ADS  Google Scholar 

  13. D J Gundlach, L Jia and T N Jackson IEEE Trans. Dev. Lett.22 571 (2001)

    Article  ADS  Google Scholar 

  14. P M Zeitzoff, C D Young, G A Brown and Y Kim IEEE Electron. Dev. Lett.24 275 (2003)

    Article  ADS  Google Scholar 

  15. D Gupta, M Katiyar and D Gupta Org. Electron.10 775 (2009)

    Article  Google Scholar 

  16. S J Kang, M Noh, D S Park, H J Kim, C N Whang and C H Chang J. Appl. Phys.95 2293 (2004)

    Article  ADS  Google Scholar 

  17. S Ogawa, T Naijo, Y Kimura, H Ishii and M Niwano Appl. Phys. Lett.86 252104 (2005)

    Article  ADS  Google Scholar 

  18. K Suemori, S Uemura, M Yoshida, S Hoshino, T Kodzasa and T Kamata Thin Solid Films516 2739 (2008)

    Article  ADS  Google Scholar 

  19. C H Liu, H W Chen, S Y Chen, H S Huang and L W Cheng Appl. Phys. Lett.95 012103 (2009)

    Article  ADS  Google Scholar 

  20. K Y Cheong, J H Moon, H J Kim, W Bahng and N Kim J. Appl. Phys.103 084113 (2008)

    Article  ADS  Google Scholar 

  21. F C Chiu, Z H Lin, C W Chang, C C Wang, W F Chuang, C Y Huang, J Y Lee and H L Hwang J. Appl. Phys.97 034506 (2005)

    Article  ADS  Google Scholar 

  22. P R Emtage and W Tantraporn Phys. Rev. Lett.8 267 (1962)

    Article  ADS  Google Scholar 

  23. J Robertson and B Falabretti J. Appl. Phys.100 014111 (2006)

    Article  ADS  Google Scholar 

  24. H S Majumdar, A Bolognesi and A J Pal J. Phys. D Appl. Phys.36 211 (2003)

    Article  ADS  Google Scholar 

  25. H S Majumdar, A Bandyopadhyay, A Bolognesi and A J Pal J. Appl. Phys.91 2433 (2002)

    Article  ADS  Google Scholar 

  26. Y J Lin, P H Wu, C L Tsai, C J Liu, C T Lee, H C Chang, Z R Lin and K Y Jeng J. Phys. D Appl. Phys.41 125103 (2008)

    Article  ADS  Google Scholar 

  27. Y J Lin, P H Wu, C L Tsai, C J Liu, Z R Lin, H C Chang and C T Lee J. Appl. Phys.103 113709 (2008)

    Article  ADS  Google Scholar 

  28. E Nadimi, P Plänitz, R Öttking, M Schreiber and C Radehaus IEEE Electron. Dev. Lett.31 881 (2010)

    Article  ADS  Google Scholar 

  29. M Nyman, O Sandberg, J F M Hardigree, S Kola, H E Katz and R Österbacka Appl. Phys. Lett.103 243502 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YJ., Wu, CL., Chiang, CH. et al. Leakage conduction behavior for top- and bottom-contact pentacene thin film transistors. Indian J Phys 94, 797–800 (2020). https://doi.org/10.1007/s12648-019-01526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01526-3

Keywords

PACS Nos.

Navigation