Skip to main content
Log in

Prenatal Immobilization Stress-Induced Spatial Memory, Depression and Anxiety-Like Behavior Deficit on the F1 Generation in the Female Mice: Possible Involvement of the Brain-Derived Neurotrophic Factor

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The prenatal stress during pregnancy has a wide variety of negative effects on the offspring behaviors. As such, in the present study the effect of prenatal immobilization stress was investigated on the brain BDNF level, spatial memory, anxiety and depression-like behavior in the F1 generation female NMRI mice. Twenty female pregnant mice were randomly allocated to stress and control groups (n = 10/group). The stress group was placed in PVC cylinders (2.5 cm in diameter and 20 cm in length) for one hour/day until the 15th day of pregnancy. The female F1 offspring was nursed by their mothers until reaching 25–30 g (9–10 weeks) which was tested for spatial memory, anxiety and depressive-like behavior using Barnes Maze, elevated plus-maze and forced swimming test, respectively. Also, the brain BDNF level was assessed by the ELISA method. Mice that underwent prenatal restraint stress exhibited impaired spatial memory in the Barnes Maze, which the time and distance to achieve the target hole and the number of errors in the female adult offspring increased than the control group. In the elevated plus-maze, the animals that underwent prenatal restraint stress spent less time in the open arms of the maze and reduced entering the open arms, compared to the control group. In addition, stress caused a significant decrease in swim time and a significant increase in float time for the female adult offspring compared to the control group. The brain BDNF concentration also decreased significantly in the stress group compared to the control group. This data suggests that prenatal stress may impair spatial memory and induce anxiety and depressive-like behavior in the adult offspring female mice via reducing brain BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McEwen, B.S., Dialogues Clin. Neurosci., 2006, vol. 8, no. 6, pp. 367.

    PubMed  PubMed Central  Google Scholar 

  2. McEwen, B.S., Bowles, N.P., Gray, J.D., Hill, M.N., Hunter, R.G., Karatsoreos, I.N., and Nasca, C., Nat. Neurosci., 2015, vol. 18, no. 10, pp.1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glover, V., Adv. Neurobiol. 2015, vol. 10, pp. 269–283.

    Article  PubMed  Google Scholar 

  4. Abe, H., Hidaka, N., Kawagoe, C., Odagiri, K., Watanabe, Y., Ikeda, T., Ishizuka, Y., Hashiguchi, H., Takeda, R., Nishimori, T., and Ishida, Y., Neurosci. Res. 2007, vol. 59, pp. 145–151.

    Article  CAS  PubMed  Google Scholar 

  5. Benoit, J.D., Rakic, P., and Frick, K.M., Behav. Brain Res., 2015, vol. 281, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Boersma, G.J. and Tamashiro, K.L., Neurobiol. Stress, 2015, vol. 1, pp. 100–108.

    Article  PubMed  Google Scholar 

  7. Markham, J.A., Taylor, A.R., Taylor, S.B., Bell, D.B., and Koenig, J.I., Front. Behav. Neurosci., 2010, vol. 4, pp. 173–176.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Popoli, M., Yan, Z., McEwen, B.S., and Sanacora, G., Nat. Rev. Neurosci., 2012, vol. 13, no. 1, pp. 22–37.

    Article  CAS  Google Scholar 

  9. Maccari, S., Krugers, H.J., Morley-Fletcher, S., Szyf, M., and Brunton, P.J., J. Neuroendocrinol., 2014, vol. 26, pp. 707–723.

    Article  CAS  PubMed  Google Scholar 

  10. Wingenfeld, K. and Wolf, O.T., CNS Neurosci. Ther., 2011, vol. 17, pp. 714–722.

    Article  CAS  PubMed  Google Scholar 

  11. Brunton, P.J. and Russell, J.A., J. Neuroendocrinol., 2010, vol. 22, pp. 258–271.

    Article  CAS  PubMed  Google Scholar 

  12. Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M., and Maccari, S., J. Neurobiol. 1999, vol. 40, pp. 302–315.

    Article  CAS  PubMed  Google Scholar 

  13. Miranda, A. and Sousa, N., Brain Behav., 2018, vol. 8, p. e00920.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buss, C., Davis, E.P., Shahbaba, B., Pruessner, J.C., Head, K., and Sandman, C.A., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 20, pp. E1312–E1319.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pryce, C.R., Brain Res. Rev. 2008, vol. 57, no. 2, pp. 596–605.

    Article  CAS  PubMed  Google Scholar 

  16. Rogalska, J., Vita Horm. 2010, vol. 82, pp. 391–419.

    Article  CAS  Google Scholar 

  17. Ratajczak, P., Kus, K., Murawiecka, P., Słodzińska, I., Giermaziak, W., and Nowakowska, E., Acta Neurobiol. Exp., 2015, vol. 75, no. 3, pp. 314–325.

    Google Scholar 

  18. Zohar, I., Shoham, S., and Weinstock, M., Europ. J. Neurosci., 2016, vol. 43, p. 590e600.

    Article  Google Scholar 

  19. Taliaz, D., Loya, A., Gersner, R., Haramati, S., Chen, A., and Zangen, A., J. Neurosci., 2011, vol. 31, no. 12, pp. 4475–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Autry, A.E. and Monteggia, L.M., Pharmacol. Rev. 2012, vol. 64, p. 238e258.

    Article  CAS  Google Scholar 

  21. Podsevatkin, V.G., Kiriukhina, S.V., Podsevatkin, D.V., Podsevatkina, S.V., and Blinov, D.S., Eksp. Klin. Farmakol., 2008, vol. 71, pp. 22–25.

    CAS  PubMed  Google Scholar 

  22. Zhang, S.Y., Wang, J.Z., Li, J.J., Wei, D.L., Sui, H.S., Zhang, Z.H., Zhou, P., and Tan, J.H., Biol. Reprod., 2011, vol. 84, pp. 672–681.

    Article  CAS  PubMed  Google Scholar 

  23. Ehteram, B.Z., Sahraei, H., Meftahi, G.H., and Khosravi, M., Braz. Arch. Biol. Technol., 2017, vol. 60, p. e17160607.

    Article  CAS  Google Scholar 

  24. Lucassen, P.J., Pruessner, J., Sousa, N., Almeida, O.F., Van Dam, A.M., Rajkowska, G., Swaab, D.F, and Czéh, B., Acta Neuropathologica. 2014, vol. 127, no. 1, pp. 109–135.

    Article  CAS  PubMed  Google Scholar 

  25. Markham, J.A., Taylor, A.R., Taylor, S.B., Bell, D.B., and Koenig, J.I., Front. Behav. Neurosci., 2010, vol. 25, pp. 173–176.

    Google Scholar 

  26. Yang, J., Han, H., Cao, J., Lingjiang, L., and Xu, L., Hippocampus, 2006, vol. 16, pp. 431–436.

    Article  PubMed  Google Scholar 

  27. Salomon, S., Bejarm C., Schorer-Apelbaum, D., and Weinstock, M., J. Neuroendocrinol. 2011, vol. 23, pp. 118–128.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J., Song, T.B., Li, Y.J., He, K.S., Ge, L., and Wang, L.R., Brain Res. 2007, vol. 1141, pp. 205–213.

    Article  CAS  PubMed  Google Scholar 

  29. Sierksma, A.S., Prickaerts, J., Chouliaras, L., Rostamian, S., Delbroek, L., Rutten, B.P., Steinbusch, H.W., and van den Hove, D.L., Neurobiol. Aging. 2013, vol. 34, pp. 319–337.

    Article  CAS  PubMed  Google Scholar 

  30. Matthews, S., Trends Endocrinol. Metab., 2002, vol. 13, pp. 373–380.

    Article  CAS  PubMed  Google Scholar 

  31. Wellberg, L., Seckl, J., and Holmes, M., Neurosci., 2001, vol. 104, pp. 71–79.

    Article  Google Scholar 

  32. Benoit, J.D., Rakic, P., and Frick, K.M., Behav. Brain Res., 2015, vol. 281, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Shrager, Y., Bayley, P.J., Bontempi, B., Hopkins, R.O., and Squire, L.R., Proc. Natl. Acad. Sci. U. S. A. 2007, vol. 104, no. 8, pp. 2961–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krugers, H.J., Hoogenraad, C.C., and Groc, L. Nat. Rev. Neurosci., 2010, vol. 11, pp. 675–681.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J.J. and Diamond, D.M. Nat. Rev. Neurosci., 2002, vol. 3, pp. 453–462.

    Article  CAS  Google Scholar 

  36. Cottrell, E.C. and Seckl, J.R., Front. Behav. Neurosci., 2009, vol. 3, pp. 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levitt, N.S., Lindsay, R.S., Holmes, M.C., and Seckl, J.R., Neuroendocrinol., 1996, vol. 64, no. 6, pp. 412–418.

    Article  CAS  Google Scholar 

  38. Van Lieshout, R.J. and Boylan, K., J. Psychiatry, 2010, vol. 55, pp. 422–430.

    Google Scholar 

  39. Walf, A.A. and Frye, C.A., Nature Protocols, 2007, vol. 2, no. 2, pp. 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glombik, K., Stachowicz A., Slusarczyk J., Trojan E., and Budziszewska B., Psychoneuroendocrinol., 2015, vol. 60, pp. 151–162.

    Article  CAS  Google Scholar 

  41. Guan L., Jia N., Zhao X., Zhang X., and Tang G., Brain Res. Bull. 2013, vol. 99, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  42. Akatsu, S., Ishikawa, C., Takemura, K., Ohtani, A., and Shiga, T., Neurosci. Res. 2015, vol. 101, pp. 15e23.

    Article  CAS  Google Scholar 

  43. Palacios-García I., Lara-Vásquez, A., Montiel, J.F., Díaz-Véliz, G.F., Sepúlveda, H., Utreras E., Montecino M., González-Billault, C., and Aboitiz, F., PLoS One, 2015, vol. 10, p. e0117680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, W. and Rosenkranzm, J.A., Neurosci. 2012, vol. 226, pp. 459–474.

    Article  CAS  Google Scholar 

  45. Etkin, A., Functional Neuroanatomy of Anxiety: A Neural Circuit Perspective. In: Behavioral Neurobiology of Anxiety and Its Treatment, Stein, M.B. and Steckler, T., Eds., vol. 2, Springer-Verlag Berlin: Heidelberg, Germany, 2009, pp. 251–277.

    Article  Google Scholar 

  46. Nuss, P., Neuropsychiatr. Dis. Treat. 2015, vol. 11, pp. 165–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Licinio, J. and Wong, M.L., Molecular Psychiatry, 2002, vol. 7, no. 6, pp. 519–519.

    Article  CAS  PubMed  Google Scholar 

  48. Dong, E., Dzitoyeva, S.G., Matrisciano, F., Tueting, P., Grayson, D.R., and Guidotti, A., Biol. Psychiatry, 2015, vol. 77, p. 589e596.

    Article  CAS  Google Scholar 

  49. Yeh, C.M., Huang, C.C., and Hsu, K.S., J. Physiol., 2012, vol. 590, p. 991e1010.

    Article  CAS  Google Scholar 

  50. Jia, N., Li, Q., Sun, H., Song, Q., Tang, G., Sun, Q., Wang, W., Chen, R., Li, H., and Zhu, Z., Neurochem-ical Res., 2015, vol. 40, no. 5, pp. 1074–1082.

    Article  CAS  Google Scholar 

  51. Boersma, G.J., Lee, R.S., Cordner, Z.A., Ewald, E.R., Purcell, R.H., Moghadam, A.A., and Tamashiro, K.L., Epigenetics, 2014, vol. 9, no. 3, pp. 437–447.

    Article  PubMed  Google Scholar 

  52. St-Cyr, S. and McGowan, P.O., Front. Behav. Neurosci., 2015, vol. 1, no. 9, pp. 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Meftahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, E., Sahraei, H., Bahari, Z. et al. Prenatal Immobilization Stress-Induced Spatial Memory, Depression and Anxiety-Like Behavior Deficit on the F1 Generation in the Female Mice: Possible Involvement of the Brain-Derived Neurotrophic Factor. Neurochem. J. 13, 201–209 (2019). https://doi.org/10.1134/S1819712419020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419020065

Keywords

Navigation