Skip to main content
Log in

Functional properties and the oligomeric state of alkyl hydroperoxide reductase subunit F (AhpF) in Pseudomonas aeruginosa

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Alkyl hydroperoxide reductase subunit F (AhpF) is a well-known flavoprotein that transfers electrons from pyridine nucleotides to the peroxidase protein AhpC via redox-active disulfide centers to detoxify hydrogen peroxide. However, study of AhpF has historically been limited to particular eubacteria, and the connection between the functional and structural properties of AhpF remains unknown. The present study demonstrates the dual function of Pseudomonas aeruginosa AhpF (PaAhpF) as a reductase and a molecular chaperone. It was observed that the functions of PaAhpF are closely linked with its structural status. The reductase and foldase chaperone function of PaAhpF predominated for its low-molecular-weight (LMW) form, whereas the holdase chaperone function of PaAhpF was found associated with its high-molecular-weight (HMW) complex. Further, the present study also demonstrates the multiple function of PaAhpF in controlling oxidative and heat stresses in P. aeruginosa resistance to oxidative and heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An BC, Lee SS, Wi SG, Park W, Chung BY (2010) Global analysis of disulfide bond proteins in Pseudomonas aeruginosa exposed to hydrogen peroxide and gamma rays. Int J Radiat Biol 86:400–408

    Article  PubMed  CAS  Google Scholar 

  • An BC, Lee SS, Jung HS, Kim JY, Lee Y, Lee KW et al (2015) An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone. FEBS Lett 589:831–2840

    Article  CAS  Google Scholar 

  • Antelmann H, Engelmann S, Schmid R, Hecker M (1996) General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of alkyl hydroperoxide reductase operon. J Bacteriol 178:6571–6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badaboina S, Bai HW, Park CH, Jang DM, Choi BY, Chung BY (2013) Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract. BMC Complement Altern Med 13:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Barranco-Medina S, Lázaro JJ, Dietz KJ (2009) The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett 583:1809–1816

    Article  CAS  PubMed  Google Scholar 

  • Basat N, Chen L, Helmann JD (1996) Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586

    Article  Google Scholar 

  • Bieger B, Essen LO (2001) Crystal structure of the catalytic core component of the alkylhydroperoxide reductase AhpF from Escherichia coli. J Mol Biol 307:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Høiby N, Givskov M (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426

    Article  CAS  PubMed  Google Scholar 

  • Calzi ML, Poole LB (1997) Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase. Biochemistry 36:13357–13364

    Article  CAS  Google Scholar 

  • Cho C, Lee GW, Hong SH, Kaur S, Jung K-W, Jung J-H et al (2019) Novel functions of peroxiredoxin Q from Deinococcus radiodurans R1 as a peroxidase and a molecular chaperone. FEBS Lett 593:219–229

    CAS  PubMed  Google Scholar 

  • Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci U S A 103:2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke TE, Romanov V, Chirgadze YN, Klomsiri C, Kisselman G, Wu-Brown J et al (2011) Crystal structure of alkyl hydroperoxidase D like protein PA0269 from Pseudomonas aeruginosa: homology of the AhpD-like structural family. BMC Struct Biol 11:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen JE, Gafni A (1993) Thermal switching between enhanced and arrested reactivation of bacterial glucose-6-phosphate dehydrogenase assisted by GroEL in the absence of ATP. J Biol Chem 268:21632–21636

    CAS  PubMed  Google Scholar 

  • Hare NJ, Scott NE, Shin EHH, Connolly AM, Larsen MR, Palmisano G, Cordwell SJ (2011) Proteomics of the oxidative stress response induced by hydrogen peroxide and paraquat reveals a novel AhpC-like protein in Pseudomonas aeruginosa. Proteomics 11:3056–3069

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632

    CAS  PubMed  Google Scholar 

  • Hong SH, Lee SS, Chung JM, Jung HS, Singh S, Mondal S, Jang HH, Cho JY, Bae HJ, Chung BY (2017) Site-specific mutagenesis of yeast 2-Cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function. Protoplasma 254:327–334

    Article  CAS  PubMed  Google Scholar 

  • Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488–1496

    CAS  PubMed  Google Scholar 

  • Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY (2004) Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–635

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Chi YH, Park SK, Lee SS, Lee JR, Park JH et al (2006) Structural and functional regulation of eukaryotic 2-Cys peroxiredoxins including the plant ones in cellular defense-signaling mechanisms against oxidative stress. Physiol Plant 126:549–559

    Article  CAS  Google Scholar 

  • Jiang R, Riebel BR, Bommarius AS (2005) Comparison of alkyl hydroperoxide reductase (AhpR) and water-forming NADH oxidase from Lactococcus lactis ATCC 19435. Adv Synth Catal 347:1139–1146

    Article  CAS  Google Scholar 

  • Jönsson TJ, Ellis HR, Poole LB (2007) Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry 46:5709–5721

    Article  PubMed  CAS  Google Scholar 

  • Jung HS, Komatsu S, Ikebe M, Craig R (2008) Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19:3234–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JR, Lee SS, Jang HH, Lee YM, Park JH, Park SC, Moon JC, Park SK, Kim SY, Lee SY, Chae HB, Jung YJ, Kim WY, Shin MR, Cheong GW, Kim MG, Kang KR, Lee KO, Yun DJ, Lee SY (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci U S A 106:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y et al (2015) Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions. Ann Bot 116:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JT, Lee SS, Mondal S, Tripathi BN, Kim S, Lee KW et al (2016) Enhancement of the chaperone activity of alkyl hydroperoxide reductase C from Pseudomonas aeruginosa PAO1 resulting from a point-specific mutation confers heat tolerance in Escherichia coli. Mol Cell 39:594–602

    Article  CAS  Google Scholar 

  • Loprasert S, Atichartpongkun S, Whangsuk W, Mongkolsuk S (1997) Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J Bacteriol 179:3944–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Imlay J (2012) Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 525:145–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, Cho MJ, Lee SY (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280:28775–28784

    Article  CAS  PubMed  Google Scholar 

  • Palma M, DeLuca D, Worgall S, Quadri LE (2004) Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacterial 186:248–252

    Article  CAS  Google Scholar 

  • Poole LB, Ellis HR (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:56–64

    Article  CAS  PubMed  Google Scholar 

  • Porras-Gómez M, Vega-Baudrit J, Núñez-Corrales S (2012) Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. J Biomater Nanobiotechnol 3:519–527

    Article  CAS  Google Scholar 

  • Reynolds CM, Poole LB (2000) Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity. Biochemistry 39:8859–8869

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CM, Poole LB (2001) Activity of one of two engineered heterodimers of AhpF, the NADH: peroxiredoxin oxidoreductase from Salmonella typhimurium, reveals intrasubunit electron transfer between domains. Biochemistry 40:3912–3919

    Article  CAS  PubMed  Google Scholar 

  • Roberts BR, Wood ZA, Jönsson TJ, Poole LB, Karplus PA (2005) Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain of Salmonella typhimurium AhpF. Protein Sci 14:2414–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha ER, Smith CJ (1999) Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J Bacteriol 181:5701–5710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Striebich RC, Smart CE, Gunasekera TS, Mueller SS, Strobel EM, McNichols BW et al (2014) Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. Int Biodeterior Biodegradation 93:33–43

    Article  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2001) Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Biochemistry 40:900–3911

    Article  CAS  Google Scholar 

  • Yun JS, Chang JH (2017) Purification, crystallization and X-ray crystallographic analysis of RabA1a from Arabidopsis thaliana. Biodesign 5:82–87

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Nuclear R&D Program of the Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Sik Lee or Byung Yeoup Chung.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.H., Singh, S., Tripathi, B.N. et al. Functional properties and the oligomeric state of alkyl hydroperoxide reductase subunit F (AhpF) in Pseudomonas aeruginosa. Protoplasma 257, 807–817 (2020). https://doi.org/10.1007/s00709-019-01465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01465-0

Keywords

Navigation