Skip to main content

Advertisement

Log in

Preparation and properties of biobased polyamides based on 1,9-azelaic acid and different chain length diamines

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of environmentally friendly polyamides (PA69, PA109 and PA129) have been synthesized by carrying out step-melting polycondensation reactions of bioderived monomers: 1,9-azelaic acid with different chain length diamines, respectively. Their molecular structure and chemical composition have been characterized using elemental analysis (EA), Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Their crystal structures, mechanical properties, thermal behaviors and moisture absorption properties have also been investigated. The number-average molecular weights of PA69, PA109 and PA129 were 51,300, 38,900 and 38,500, respectively, and the main crystal structures of them were α-crystalline and γ-crystalline form. As the length of diamine increased, the melting temperatures of them were from 214 to 203 to 195 °C, respectively, and the crystallization temperatures of them were from 176 to 166 to 161 °C, respectively. The bending strengths of them were determined to be 102.58 MPa, 84.11 MPa, 65.91 MPa, respectively, and the izod impact strengths of them were 9.24 kJ/m2, 8.82 kJ/m2, 8.54 kJ/m2, respectively. They were also found to absorb less moisture than PA6 and PA66.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carothers WH (1929) Studies on polymerization and ring formation I. An introduction to the general theory of condensation polymers. J Am Chem Soc 51:2548–2559

    Article  CAS  Google Scholar 

  2. Yang SH, Cha SH, Kim JI, Lee MH, Kim SG, Ryu SH (2017) Change of thermal properties of polyamide-6,6/glass fiber composite by the addition of nigrosine. Polym Bull 74:5083–5094. https://doi.org/10.1007/s00289-017-2005-3

    Article  CAS  Google Scholar 

  3. Faridi S, Moghanian H, Shabanian M (2018) Novel heat-resistant and soluble poly(amide–ether)/zinc oxide nanocomposites: synthesis, characterization and computational study. Polym Bull 75:4445–4468. https://doi.org/10.1007/s00289-018-2280-7

    Article  CAS  Google Scholar 

  4. Dodds DR, Gross RA (2007) Chemicals from biomass. Science 318:1250–1251. https://doi.org/10.1126/science.1146356

    Article  CAS  PubMed  Google Scholar 

  5. Hill K (2000) Fats and oils as oleochemical raw materials. Pure Appl Chem 72:1255–1264. https://doi.org/10.1351/pac200072071255

    Article  CAS  Google Scholar 

  6. Liu QY, Jiang L, Shi R, Zhang LQ (2012) Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers-A review. Prog Polym Sci 37:715–765. https://doi.org/10.1016/j.progpolymsci.2011.11.001

    Article  CAS  Google Scholar 

  7. Dhanalakshmi M, Jop JP (2008) Preparation and characterization of electrospun fibers of nylon 11. Express Polym Lett 2:540–545. https://doi.org/10.3144/expresspolymlett.2008.65

    Article  CAS  Google Scholar 

  8. Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802. https://doi.org/10.1039/b703294c

    Article  CAS  PubMed  Google Scholar 

  9. Ruehle DA, Perbix C, Castaneda M, Dorgan JR, Mittal V, Halley P, Marlin D (2013) Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer 54:6961–6970. https://doi.org/10.1016/j.polymer.2013.10.013

    Article  CAS  Google Scholar 

  10. Mudiyanselage AY, Viamajala S, Yamamoto K, Varanasi S (2014) Simple ring-closing metathesis approach for synthesis of PA11, 12, and 13 precursors from oleic acid. ACS Sustain Chem Eng 2:2831–2836. https://doi.org/10.1021/sc500599u

    Article  CAS  Google Scholar 

  11. Jasinska L, Villani M, Wu J, Van D, Klop E, Rastogill S, Koning CE (2011) Novel, fully biobased semicrystalline polyamides. Macromolecules 44:3458–3466. https://doi.org/10.1021/ma200256v

    Article  CAS  Google Scholar 

  12. Jasinska L, Villani M, Dudenko D, Asselen OV, Klop E, Rastogill S, Hansen MR, Koning CE (2012) Local conformation and cocrystallization phenomena in renewable diaminoisoidide-Based polyamides studied by FT-IR, Solid State NMR, and WAXD. Macromolecules 45:2796–2808. https://doi.org/10.1021/ma300133d

    Article  CAS  Google Scholar 

  13. Hablot E, Donnio B, Bouquey M, Averous L (2010) Dimer acid-based thermoplastic bio-polyamides: reaction kinetics, properties and structure. Polymer 51:5895–5902. https://doi.org/10.1016/j.polymer.2010.10.026

    Article  CAS  Google Scholar 

  14. Kugel A, He J, Samanta S, Bahr J, Lattimer JL, Fuqua MA, Ulven CA, Chisholm BJ (2012) Semicrystalline polyamide engineering thermoplastics based on the renewable monomer, 1,9-nonane diamine: thermal properties and water absorption. Polym-Plast Technol 51:1266–1274. https://doi.org/10.1080/03602559.2012.699576

    Article  CAS  Google Scholar 

  15. Cheng C, Mutua FN, Dong YS, Zhu B, He Y (2018) Bio-based poly(pentamethylene oxamide) synthesized by spray/solid-state polycondensation. Polym Bull 75:121–134. https://doi.org/10.1007/s00289-017-2023-1

    Article  CAS  Google Scholar 

  16. Wang Z, Wei T, Xue X, He MM, Xue JJ, Song M, Wu SZ, Kang HL, Zhang LQ, Jia QX (2014) Synthesis of full bio-based polyamides with tunable properties by employing itaconic acid. Polymer 55:4846–4856. https://doi.org/10.1016/j.polymer.2014.07.034

    Article  CAS  Google Scholar 

  17. Cotarca L, Delogu P, Nardelli A, Maggioni P, Bianchini R, Sguassero S, Alini S, Dario R, Glauti G, Pitta G (2001) Efficient and scaleable methods for ö-functionalized nonanoic acids: development of a novel process for azelaic and 9-aminononanoic acids (nylon-6,9 and nylon-9 precursors). Org Process Res Dev 5:69–76. https://doi.org/10.1021/op000081j

    Article  CAS  Google Scholar 

  18. Vasishtha AK, Trivedi RK, Das C (1990) Sebacic acid and 2-octanol from castor-oil. J Am Oil Chem Soc 67:333–337. https://doi.org/10.1007/BF02539685

    Article  CAS  Google Scholar 

  19. Azcan N, Demirel E (2008) Obtaining 2-octanol, 2-octanone, and sebacic acid and from castor oil by microwave-induced alkali fusion. Ind Eng Chem Res 47:1774–1778. https://doi.org/10.1021/ieo71345u

    Article  CAS  Google Scholar 

  20. Duuren V, Brehmer B, Mars AE, Eggink G, Santos MD, Sanders JPM (2011) A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108:1298–1306. https://doi.org/10.1002/bit.23074

    Article  CAS  PubMed  Google Scholar 

  21. Lange JP, Vestering JZ, Haan RJ (2007) Towards ‘bio-based’ nylon: conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun 33:3488–3490. https://doi.org/10.1039/b705782b

    Article  CAS  Google Scholar 

  22. Capsal JF, Dantras E, Dandurand J, Lacabanne C (2010) Dielectric relaxations and ferroelectric behavior of even-odd polyamide PA 6,9. Polymer 51:4606–4610. https://doi.org/10.1016/j.polymer.2010.07.040

    Article  CAS  Google Scholar 

  23. Zilberman M, Siegmann A, Narkis M (1996) Structure and properties of 6/6.9 copolyamide series. 1. Amorphous phase. J Appl Polym Sci 59:581–587. https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4%3c581:AID-APP3%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  24. De SB, Goethals A, Van DS, Rahier H, De CK (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47:4118–4126. https://doi.org/10.1007/s10853-012-6266-9

    Article  CAS  Google Scholar 

  25. Samanta S, He J, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine II: synthesis and characterization of nylon 13,6. Polymer 54:1141–1149. https://doi.org/10.1016/j.polymer.2012.12.034

    Article  CAS  Google Scholar 

  26. Hablot E, Tisserand A, Bouquey M, Averous L (2011) Accelerated artificial ageing of new dimer fatty acid-based polyamides. Polym Degrad Stabil 96:1097–1103. https://doi.org/10.1016/j.polymdegradstab.2011.03.006

    Article  CAS  Google Scholar 

  27. Huang Y, Li WH, Yan DY (2002) Preparation and characterization of a series of polyamides with long alkylene segments: nylons 12 20, 10 20, 8 20, 6 20, 4 20 and 2 20. Polym Bull 49:111–118. https://doi.org/10.1007/s00289-002-0090-3

    Article  CAS  Google Scholar 

  28. Sun ZJ, Wang X, Jiang CY (2016) Isothermal and nonisothermal crystallization kinetics of bio-sourced nylon 69. Chin J Chem Eng 24:638–645. https://doi.org/10.1016/j.cjche.2015.12.021

    Article  CAS  Google Scholar 

  29. Murase SK, Franco L, Puiggali J (2015) Reversible changes induced by temperature in the spherulitic birefringence of nylon 69. Polymer 76:34–45. https://doi.org/10.1016/j.polymer.2015.08.043

    Article  CAS  Google Scholar 

  30. Ehrenstein M, Dellsperger S, Kocher C, Stutzmann N, Weder C, Smith P (2000) New polyamides with long alkane segments: nylon 6.24 and 6.34. Polymer 41:3531–3539. https://doi.org/10.1016/S0032-3861(99)00590-X

    Article  CAS  Google Scholar 

  31. Jones NA, Atkins ED, Hill MJ (2000) Comparison of structures and behavior on heating of solution-grown, chain-folded lamellar crystals of 31 even-even nylons. Macromolecules 33:2642–2650. https://doi.org/10.1021/ma9919559

    Article  CAS  Google Scholar 

  32. Zhang GS, Yan DY (2004) Morphology and structure of chain-folded lamellar crystals of nylons 2-22, 4-22, 6-22, 8-22, 10-22 and 12-22. Cryst Growth Des 4:383–387. https://doi.org/10.1021/cg034177r

    Article  CAS  Google Scholar 

  33. Munozguerra S, Prieto A, Montserrat JM, Sekiguchi H (1992) Structural studies of odd-nylon crystals grown from solution. J Mater Sci 27:89–97. https://doi.org/10.1007/BF02403648

    Article  CAS  Google Scholar 

  34. Bermudez M, Leon S, Aleman C, Munoz SG (2003) On the lamellar crystal structure of nylons 6,8 and 8,10: a study combining electron microscopy and energy analysis. Macromol Chem Phys 204:83–88. https://doi.org/10.1002/macp.200290067

    Article  CAS  Google Scholar 

  35. Jones NA, Atkins EDT, Hill MJ, Cooper SJ, Franco L (1997) Polyamides with a choice of structure and crystal surface chemistry. Studies of chain-folded lamellae of nylons 8-10 and 10-12 and comparison with the other 2 N 2(N + 1) nylons 4-6 and 6-8. Macromolecules 30:3569–3578. https://doi.org/10.1021/ma961494g

    Article  CAS  Google Scholar 

  36. Franco L, Cooper SJ, Atkins EDT, Hill MJ, Jones NA (1998) Nylon 69 can crystallize with hydrogen bonding in two and in three interchain directions. J Polym Sci Pol Phys 36:1153–1165. https://doi.org/10.1002/(SICI)1099-0488(199805)36:7%3c1153:AID-POLB6%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  37. Prieto A, Iribarren I, Munozguerra S (1993) Structural studies of nylon 13, 13. J Mater Sci 28:4059–4062. https://doi.org/10.1007/BF00351232

    Article  CAS  Google Scholar 

  38. Zilberman M, Siegmann A, Narkis M (1996) Structure and properties of 6/6.9 copolyamide series. II. The crystalline phase. J Macromol Sci B 35:1–21. https://doi.org/10.1080/00222349608220373

    Article  Google Scholar 

  39. Li YJ, Yan DY, Zhu XY (2000) Crystalline transition in Nylon 10 10. Macromol Rapid Commun 21:1282–1285. https://doi.org/10.1002/1521-3927(20001201)21:18%3c1282:AID-MARC1282%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  40. Zhang GS, Yan DY (2003) Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites. J Appl Polym Sci 88:2181–2188. https://doi.org/10.1002/app.11879

    Article  CAS  Google Scholar 

  41. Puiggali J, Franco L, Aleman C, Subirana JA (1998) Crystal structures of nylon 5,6. A model with two hydrogen bond directions for nylons derived from odd diamines. Macromolecules 31:8540–8548. https://doi.org/10.1021/ma971895b

    Article  CAS  Google Scholar 

  42. Gamez LM, Soto D, Franco L, Puiggali J (2010) Brill transition and melt crystallization of nylon 56 an odd-even polyamide with two hydrogen-bonding directions. Polymer 51:5788–5798. https://doi.org/10.1016/j.polymer.2010.09.074

    Article  CAS  Google Scholar 

  43. Villasenor P, Franco L, Subirana JA, Puiggali J (1999) On the crystal structure of odd-even nylons: polymorphism of nylon 5, 10. J Polym Sci Part B Polym Phys 37:2383–2395. https://doi.org/10.1002/(sici)1099-0488(19990901)37:17%3c2383::aid-polb9%3e3.0.co;2-g

  44. Moran CS, Barthelon A, Pearsall A, Mittal V, Dorgan JR (2016) Biorenewable blends of polyamide-4,10 and polyamide-6,10. J Appl Polym Sci 133:43626. https://doi.org/10.1002/app.43626

    Article  CAS  Google Scholar 

  45. Liu ZJ, Zhou P, Yan DY (2004) Preparation and properties of nylon-1010/montmorillonite nanocomposites by melt intercalation. J Appl Polym Sci 91:1834–1841. https://doi.org/10.1002/app.13336

    Article  CAS  Google Scholar 

  46. Telen L, Puyvelde PV, Goderis B (2016) Random copolymers from polyamide 11 and polyamide 12 by reactive extrusion: synthesis, eutectic phase behavior, and polymorphism. Macromolecules 49:876–890. https://doi.org/10.1021/acs.macromol.5b00976

    Article  CAS  Google Scholar 

  47. Chum HL, Overend RP (2001) Biomass and renewable fuels. Fuel Process Technol 71:187–195. https://doi.org/10.1016/S0378-3820(01)00146-1

    Article  CAS  Google Scholar 

  48. Levchik SV, Well ED, Lewin M (1999) Thermal decomposition of aliphatic nylons. Polym Int 48:532–557. https://doi.org/10.1002/(sici)1097-0126(199907)48:7%3c532::aid-pi214%3e3.0.co;2-r

    Article  CAS  Google Scholar 

  49. Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD (2001) States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 42:8461–8467. https://doi.org/10.1016/S0032-3861(01)00358-5

    Article  CAS  Google Scholar 

  50. Komalan C, George KE, Varughese KT, Mathew VS, Thomas S (2008) Thermogravimetric and wide angle X-ray diffraction analysis of thermoplastic elastomers from nylon copolymer and EPDM rubber. Polym Degrad Stabil 93:2104–2112. https://doi.org/10.1016/j.polymdegradstab.2008.08.011

    Article  CAS  Google Scholar 

  51. Ballistreri A, Garozzo D, Giuffrida M, Montaudo G (1987) Mechanism of thermal decomposition of nylon 66. Macromolecules 20:2991–2997. https://doi.org/10.1021/ma00178a007

    Article  CAS  Google Scholar 

  52. Wang WZ, Zhang YH (2010) Synthesis of semiaromatic polyamides based on decanediamine. Chinese J Polym Sci 28:467–473. https://doi.org/10.1007/s10118-010-9049-2

    Article  CAS  Google Scholar 

  53. Prevorsek DC, Butler RH, Reimschussel HK (1971) Mechanical relaxations polyamides. J Polym Sci Pol Phys 9:867–886. https://doi.org/10.1002/pol.1971.160090508

    Article  CAS  Google Scholar 

  54. Reuvers NJW, Huinink HP, Fischer HR, Adan OCG (2012) Quantitative water uptake study in thin nylon-6 films with NMR imaging. Macromolecules 45:1937–1945. https://doi.org/10.1021/ma202719x

    Article  CAS  Google Scholar 

  55. Laurati M, Arbe A, Anda AR, Fillot LA, Sotta P (2014) Effect of polar solvents on the crystalline phase of polyamides. Polymer 55:2867–2881. https://doi.org/10.1016/j.polymer.2014.04.031

    Article  CAS  Google Scholar 

  56. Xu YQ, Qu JP (2009) Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polym Sci 112:3185–3191. https://doi.org/10.1002/app.29797

    Article  CAS  Google Scholar 

  57. He MM, Wang Z, Wang RG, Zhang LQ, Jia QX (2016) Preparation of bio-based polyamide elastomer by using green plasticizers. Polymers 8:257. https://doi.org/10.3390/polym8070257

    Article  PubMed Central  Google Scholar 

  58. Rastogi S, Terry AE, Vinken E (2004) Dissolution of hydrogen-bonded polymers in water: a study of nylon-4,6. Macromolecules 37:8825–8828. https://doi.org/10.1021/ma0483423

    Article  CAS  Google Scholar 

  59. Vinken E, Terryt AE, Asselen OV, Spoelstra AB, Graf R, Rastogi S (2008) Role of superheated water in the dissolution and perturbation of hydrogen bonding in the crystalline lattice of polyamide 4,6. Langmuir 24:6313–6326. https://doi.org/10.1021/la800378c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work supported by the National Key Research and Development Program of China (No. 2017YFB0309003) and the National Natural Science Foundation of China (No. 21374015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Liu, K., Li, T. et al. Preparation and properties of biobased polyamides based on 1,9-azelaic acid and different chain length diamines. Polym. Bull. 77, 1135–1156 (2020). https://doi.org/10.1007/s00289-019-02791-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02791-2

Keywords

Navigation