Skip to main content
Log in

NORMAL SUBGROUPS GENERATED BY A SINGLE POLYNOMIAL AUTOMORPHISM

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study criteria for deciding when the normal subgroup generated by a single special polynomial automorphism of 𝔸n is as large as possible, namely, equal to the normal closure of the special linear group in the special automorphism group. In particular, we investigate m-triangular automorphisms, i.e., those that can be expressed as a product of affine automorphisms and m triangular automorphisms. Over a field of characteristic zero, we show that every nontrivial 4-triangular special automorphism generates the entire normal closure of the special linear group in the special tame subgroup, for any dimension n ≥ 2. This generalizes a result of Furter and Lamy in dimension 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Cantat, S. Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Y. de Cornulier.

  2. В. И. Данилов, Непростота группы унимодулярных автоморфизмов аффинной плоскости, Мат. заметки 15 (1974), vyp. 2, 289–293. Engl. transl.: V. I. Danilov, Nonsimplicity of the group of unimodular automorphisms of an affine plane, Math. Notes Acad. Sci. of the USSR 15 (1974), 165–167.

  3. E. Edo, Coordinates of R[x, y]: constructions and classifications, Comm. Algebra 41 (2013), no. 12, 4694–4710.

    Article  MathSciNet  Google Scholar 

  4. E. Edo, S. Kuroda, Generalisations of the tame automorphisms over a domain of positive characteristic, Transform. Groups 20 (2015), no. 1, 65–81.

    Article  MathSciNet  Google Scholar 

  5. E. Edo, D. Lewis, The affine automorphism group of 𝔸3is not a maximal subgroup of the tame automorphism group, Michigan Math. J. 64 (2015), no. 3, 555–568.

    Article  MathSciNet  Google Scholar 

  6. E. Edo, D. Lewis, Co-tame polynomial automorphisms, arXiv:1705.01120 (2017).

  7. A. van den Essen, A counterexample to a conjecture of Meisters, in: Automorphisms of Affine Spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 231–233.

  8. A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, Vol. 190, Birkhäuser Verlag, Basel, 2000.

  9. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol. 136, Subseries Invariant Theory and Algebraic Transformation Groups, Vol. VII, Springer-Verlag, Berlin, 2006.

  10. J.-P. Furter, S. Lamy, Normal subgroup generated by a plane polynomial automorphism, Transform. Groups 15 (2010), no. 3, 577–610.

    Article  MathSciNet  Google Scholar 

  11. H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.

    MathSciNet  MATH  Google Scholar 

  12. W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33–41.

  13. S. Lamy, P. Przytycki, Acylindrical hyperbolicity of the three-dimensional tame automorphism group, arXiv:1610:05457 (2017).

  14. S. Maubach, P.-M. Poloni, The Nagata automorphism is shifted linearizable, J. Algebra 321 (2009), no. 3, 879–889.

    Article  MathSciNet  Google Scholar 

  15. S. Maubach, R. Willems, Polynomial automorphisms over finite fields: mimicking tame maps by the Derksen group, Serdica Math. J. 37 (2011), no. 4, 305–322.

    MathSciNet  MATH  Google Scholar 

  16. A. Minasyan, D. Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Annalen 362 (2015), no. 3-4, 1055–1105.

    Article  MathSciNet  Google Scholar 

  17. I. P. Shestakov, U. U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), no. 1, 197–227.

    Article  MathSciNet  Google Scholar 

  18. M. K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), no. 2, 209–212.

    Article  MathSciNet  Google Scholar 

  19. D. Wright, The generalized amalgamated product structure of the tame automorphism group in dimension three, Transform. Groups 20 (2015), no. 1, 291–304.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. LEWIS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LEWIS, D. NORMAL SUBGROUPS GENERATED BY A SINGLE POLYNOMIAL AUTOMORPHISM. Transformation Groups 25, 177–189 (2020). https://doi.org/10.1007/s00031-019-9511-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-019-9511-3

Navigation