Skip to main content
Log in

Q-Nuc: a bioinformatics pipeline for the quantitative analysis of nucleosomal profiles

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Nucleosomal profiling is an effective method to determine the positioning and occupancy of nucleosomes, which is essential to understand their roles in genomic processes. However, the positional randomness across the genome and its relationship with nucleosome occupancy remains poorly understood. Here we present a computational method that segments the profile into nucleosomal domains and quantifies their randomness and relative occupancy level. Applying this method to published data, we find on average ~ 3-fold differences in the degree of positional randomness between regions typically considered “well-ordered”, as well as an unexpected predominance of only two types of domains of positional randomness in yeast cells. Further, we find that occupancy levels between domains actually differ maximally by ~ 2–3-fold in both cells, which has not been described before. We also developed a procedure by which one can estimate the sequencing depth that is required to identify nucleosomal positions even when regional positional randomness is high. Overall, we have developed a pipeline to quantitatively characterize domain-level features of nucleosome randomness and occupancy genome-wide, enabling the identification of otherwise unknown features in nucleosomal organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. https://doi.org/10.1038/nrg2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Radman-Livaja M, Rando OJ (2010) Nucleosome positioning: How is it established, and why does it matter? Dev Biol 339(2):258–266. https://doi.org/10.1016/j.ydbio.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  3. Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13(7):436–447. https://doi.org/10.1038/nrm3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20(3):267–273. https://doi.org/10.1038/nsmb.2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18(6):735–748. https://doi.org/10.1016/j.molcel.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  6. Schones DE, Cui KR, Cuddapah S, Roh TY, Barski A, Wang ZB, Wei G, Zhao KJ (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. https://doi.org/10.1016/j.cell.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  7. Cole HA, Howard BH, Clark DJ (2012) Genome-wide mapping of nucleosomes in yeast using paired-end sequencing. Method Enzymol 513:145–168. https://doi.org/10.1016/B978-0-12-391938-0.00006-9

    Article  CAS  Google Scholar 

  8. Voong LN, Xi L, Sebeson AC, Xiong B, Wang JP, Wang X (2016) Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell 167(6):1555–1570e1515. https://doi.org/10.1016/j.cell.2016.10.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Teif VB (2016) Nucleosome positioning: resources and tools online. Brief Bioinform 17(5):745–757. https://doi.org/10.1093/bib/bbv086

    Article  CAS  PubMed  Google Scholar 

  10. van der Heijden T, van Vugt JJFA, Logie C, van Noort J (2012) Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy. Proc Natl Acad Sci USA 109(38):E2514–E2522. https://doi.org/10.1073/pnas.1205659109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bai L, Morozov AV (2010) Gene regulation by nucleosome positioning. Trends Genet 26(11):476–483. https://doi.org/10.1016/j.tig.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  12. Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17(2):251–257. https://doi.org/10.1038/nsmb.1741

    Article  CAS  PubMed  Google Scholar 

  13. Wu Y, Zhang W, Jiang J (2014) Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice. PLoS Genet 10(5):e1004378. https://doi.org/10.1371/journal.pgen.1004378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baldi S, Jain DS, Harpprecht L, Zabel A, Scheibe M, Butter F, Straub T, Becker PB (2018) Genome-wide rules of nucleosome phasing in drosophila. Mol Cell 72(4):661–672e664. https://doi.org/10.1016/j.molcel.2018.09.032

    Article  CAS  PubMed  Google Scholar 

  15. Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pritchard JK (2012) Controls of nucleosome positioning in the human genome. PLoS Genet 8(11):e1003036. https://doi.org/10.1371/journal.pgen.1003036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang C, Pugh BF (2009) A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol 10(10):R109. https://doi.org/10.1186/gb-2009-10-10-r109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan C, Chen H, Bai L (2018) Systematic study of nucleosome-displacing factors in budding yeast. Mol Cell 71(2):294–305e294. https://doi.org/10.1016/j.molcel.2018.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W (2013) DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23(2):341–351. https://doi.org/10.1101/gr.142067.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu K, Tang Q, Feng J, Liu XS, Zhang Y (2012) DiNuP: a systematic approach to identify regions of differential nucleosome positioning. Bioinformatics 28(15):1965–1971. https://doi.org/10.1093/bioinformatics/bts329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flores O, Orozco M (2011) nucleR: a package for non-parametric nucleosome positioning. Bioinformatics 27(15):2149–2150. https://doi.org/10.1093/bioinformatics/btr345

    Article  CAS  PubMed  Google Scholar 

  21. Xi L, Brogaard K, Zhang Q, Lindsay B, Widom J, Wang JP (2014) A locally convoluted cluster model for nucleosome positioning signals in chemical map. J Am Stat Assoc 109(505):48–62. https://doi.org/10.1080/01621459.2013.862169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  23. Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–1036. https://doi.org/10.1016/j.cell.2005.09.031

    Article  CAS  PubMed  Google Scholar 

  24. Miura H, Takahashi S, Poonperm R, Tanigawa A, Takebayashi SI, Hiratani I (2019) Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nat Genet. https://doi.org/10.1038/s41588-019-0474-z

    Article  PubMed  Google Scholar 

  25. Feng JH, Dai XH, Dai ZM, Xiang QA, Wang JA, Deng YY, He CS (2010) A simulation model for nucleosome distribution in the yeast genome based on integrated cross-platform positioning datasets. Math Comput Model 52(11–12):1932–1939. https://doi.org/10.1016/j.mcm.2010.03.043

    Article  Google Scholar 

  26. Birney E (2001) Hidden Markov models in biological sequence analysis. IBM J Res Dev 45(3–4):449–454. https://doi.org/10.1147/Rd.453.0449

    Article  CAS  Google Scholar 

  27. Yoon BJ (2009) Hidden Markov models and their applications in biological sequence analysis. Curr Genomics 10(6):402–415. https://doi.org/10.2174/138920209789177575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474(7352):516–520. https://doi.org/10.1038/nature10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28(4):396–408. https://doi.org/10.1101/gad.233221.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu YL, Boyle AP, Zhang QC, Zakharia F, Spacek DV, Li JJ, Xie D, Olarerin-George A, Steinmetz LM, Hogenesch JB, Kellis M, Batzoglou S, Snyder M (2013) Extensive variation in chromatin states across humans. Science 342(6159):750–752. https://doi.org/10.1126/science.1242510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munoz S, Minamino M, Casas-Delucchi CS, Patel H, Uhlmann F (2019) A role for chromatin remodeling in cohesin loading onto chromosomes. Mol Cell 74(4):664–673e665. https://doi.org/10.1016/j.molcel.2019.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517. https://doi.org/10.1101/gr.079558.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghaffari N, Yousefi MR, Johnson CD, Ivanov I, Dougherty ER (2013) Modeling the next generation sequencing sample processing pipeline for the purposes of classification. BMC Bioinform 14:307. https://doi.org/10.1186/1471-2105-14-307

    Article  Google Scholar 

  34. Jansen A, Verstrepen KJ (2011) Nucleosome positioning in Saccharomyces cerevisiae. Microbiology and molecular biology reviews: MMBR 75(2):301–320. https://doi.org/10.1128/MMBR.00046-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganguli D, Chereji RV, Iben JR, Cole HA, Clark DJ (2014) RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res 24(10):1637–1649. https://doi.org/10.1101/gr.177014.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chereji RV, Ramachandran S, Bryson TD, Henikoff S (2018) Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol 19(1):19. https://doi.org/10.1186/s13059-018-1398-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9(3):215–216. https://doi.org/10.1038/nmeth.1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mammana A, Chung HR (2015) Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol 16:151. https://doi.org/10.1186/s13059-015-0708-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS (2012) Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 9(5):473–476. https://doi.org/10.1038/nmeth.1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J (2006) A genomic code for nucleosome positioning. Nature 442(7104):772–778. https://doi.org/10.1038/nature04979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458(7236):362–366. https://doi.org/10.1038/nature07667

    Article  CAS  PubMed  Google Scholar 

  42. Dekker J (2008) Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 283(50):34532–34540. https://doi.org/10.1074/jbc.M806479200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Basic Research Program of China (2018YFC1003501), the National Natural Science Foundation of China (Nos. 11374207, 31501054, 31670722, 31971151, 81627801 and 81972909) and the U.S. National Institutes of Health (R01CA204962 and R21AI126308 to J.L.).

Author information

Authors and Affiliations

Authors

Contributions

ZS conceived and designed the project. YW performed almost all of the data analysis. QS, JL and DMC performed some of the data analysis. YW, HL, DMC and ZS wrote the manuscript. DMC and ZS are senior authors of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hua Li or Daniel M. Czajkowsky.

Ethics declarations

Conflict of interest

The authors have declared no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, Q., Liang, J. et al. Q-Nuc: a bioinformatics pipeline for the quantitative analysis of nucleosomal profiles. Interdiscip Sci Comput Life Sci 12, 69–81 (2020). https://doi.org/10.1007/s12539-019-00354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00354-7

Keywords

Navigation