Skip to main content
Log in

On the Practical h-stability of Nonlinear Systems of Differential Equations

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a new notion of stability for nonlinear systems of differential equations called practical h-stability. Necessary and sufficient conditions for practical h-stability are given using the Lyapunov theory. Our original results generalize well-known fundamental results: practical exponential stability, practical asymptotic stability, and practical stability for nonlinear time-varying systems. In addition, these results are used to study the practical h-stability of two important classes of nonlinear systems, namely perturbed and cascaded systems. The last part is devoted to the study of the problem of practical h-stabilization for certain classes of nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benabdallah A, Ellouze I, Hammami MA. Practical stability of nonlinear time-varying cascade systems. J Dyn Control Syst 2009;15:45–62.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaillet A, Loría A. Uniform global practical asymptotic stability for time-varying cascaded systems. Eur J Control 2006;12(6):595–605.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaillet A, Loría A, Kelly R. Robustness of PID-controlled manipulators vis-à-vis actuator dynamics and external disturbances. Eur J Control 2007;6:563–76.

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi SK, Koo N. Asymptotic equivalence between two linear Volterra difference systems. Comput Math Appl 2004;47:461–71.

    Article  MathSciNet  MATH  Google Scholar 

  5. Choi SK, Goo YH, Koo N. Lipschitz stability exponential asymptotic stability for the nonlinear functional differential systems. Dyn Syst Appl 1997;6:397–410.

    MathSciNet  MATH  Google Scholar 

  6. Choi SK, Koo NJ, Ryu HS. h −stability of differential systems via t −similarity. Bull Korean Math Soc 1997;34:371–83.

    MathSciNet  MATH  Google Scholar 

  7. Choi SK, Goo HG, Koo N. 2008. h −stability of dynamic equations on time scales with nonregressivity. Abstr Appl Anal.

  8. Choi SK, Goo HG, Koo N. Variationally stable difference systems. J Math Anal Appl 2001;256:587–605.

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi SK, Koo N. Variationally stable impulsive differential systems. Dyn Syst 2015;30(4):435–49.

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi SK, Koo N. A converse theorem on h −stability via impulsive variational systems. J Korean Math Soc 2016;53(5):1115–31.

    Article  MathSciNet  MATH  Google Scholar 

  11. Garashchenko G, Pichkur V. Properties of optimal sets of practical stability of differential inclusions. Part I. Part II. J Autom Inf Sci 2006;38:111.

    Article  Google Scholar 

  12. Ghanmi B, Hadj Taieb N, Hammami MA. Growth conditions for exponential stability of time varying perturbed systems. Int J Control 2013;86(6):1086–97.

    Article  MathSciNet  MATH  Google Scholar 

  13. Goo YH, Ry DH. h −stability for perturbed integro-differential systems. J Chungcheong Math Soc 2008;21:511–7.

    Google Scholar 

  14. Khalil HK. Nonlinear systems, 3rd ed. Upper Saddle River: Prentice Hall; 2002.

    MATH  Google Scholar 

  15. Lasalle J, Lefschetz S. Stability by Lyapunov direct method and application. New York: Academic Press; 1961.

    MATH  Google Scholar 

  16. Lakshmikantham V, Leela S, Martynyuk AA. Practical stability of nonlinear systems. Singapore: World Scientific; 1990.

    Book  MATH  Google Scholar 

  17. Lakshmikantham V, Leela S, Martynyuk AA. Stability analysis of nonlinear systems. New York: Marcel Dekker; 1989.

    MATH  Google Scholar 

  18. Lakshmikantham V, Deo SG, Vol. 1. Method of variation of parameters for dynamic systems. New Delhi: Gordon and Breach Science Publishers; 1998.

    MATH  Google Scholar 

  19. Liu B, Hill DJ. Uniform stability and ISS of discrete-time impulsive hybrid systems. Nonlinear Analysis Hybrid Systems May 2010;4(2):319–33.

    Article  MathSciNet  MATH  Google Scholar 

  20. Martynyuk AA, Sun Z. Practical stability and its applications. Beijing: Science Press; 2003. (in Chinese).

    Google Scholar 

  21. Martynyuk AA, Vol. 13. Advances in stability theory at the end of the 20th Century (Stability and Control: Theory, Methods and Applications). London: Taylor and Francis; 2003.

    Book  Google Scholar 

  22. Martynuk AA. On exponential stability with respect to some of the variables. Russian Acad Sci Dokl Math 1994;48:1720.

    MathSciNet  Google Scholar 

  23. Pinto M. Stability of nonlinear differential systems. Applicable Analysis: An International Journal 1992;43(1-2):1–20.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pinto M. Perturbations of asymptotically stable differential systems. Analysis 1984;4 (1-2):161–75.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang P, Liu X. 2013. h −Stability for differential systems relative to initial time difference. Abstract and applied analysis vol.

  26. Yoshizawa T. 1966. Stability theory by Liapunov’s second method. Math. Sot, Japan, Tokyo.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ghanmi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, B. On the Practical h-stability of Nonlinear Systems of Differential Equations. J Dyn Control Syst 25, 691–713 (2019). https://doi.org/10.1007/s10883-019-09454-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-09454-5

Keywords

Mathematics Subject Classification (2010)

Navigation