Skip to main content
Log in

Synthesis of LaB6–ZrB2 Powder Mixture by Borothermal Reduction of La(OH)3 and ZrO(OH)2 Coprecipitated in Boron Suspension

  • Published:
Refractories and Industrial Ceramics Aims and scope

Eutectic LaB6–ZrB2 powder was synthesized by borothermal reduction of an La(OH)3–ZrO(OH)2 mixture under vacuum with isothermal curing at 1200 – 1600°C. The mixture of hydroxides was prepared via coprecipitation from aqueous solutions of La and Zr nitrates in a suspension of amorphous boron. The effect of an excess of B on the phase and elemental compositions of the boride mixture was studied. The particle size of the obtained powders depended on the synthesis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Taran, D. Voronovich, D. Oranskaya, et al., “Thermionic emission of LaB6–ZrB2 quasi binary eutectic alloy with different ZrB2 fibers orientation,” Funct. Mater., 20(4), 485 – 488 (2013).

    Article  Google Scholar 

  2. Yu. B. Paderno, A. A. Taran, D. A. Voronovich, et al., “Thermionic properties of LaB6– (Ti0.6Zr0.4)B2 material,” Funct. Mater., 15(1), 63 (2008); http://dspace.nbuv.gov.ua/handle/123456789/137229.

    CAS  Google Scholar 

  3. M. H. Berger, T. C. Back, P. Soukiassian, et al., “Local investigation of the emissive properties of LaB6–ZrB2 eutectics,” J. Mater. Sci., 52(10), 5537 – 5543 (2017); https://link.springer.com/article/10.1007/s10853-017-0816-0.

    Article  CAS  Google Scholar 

  4. E. K. Storms, “Thermionic emission and vaporization behavior of the ternary systems of lanthanum hexaboride containing molybdenum boride, molybdenum diboride, zirconium diboride, gadolinium hexaboride, and neodymium hexaboride,” J. Appl. Phys., 54(2), 1076 – 1081 (1983); https://aip.scitation.org/doi/abs/10.1063/1.332114.

    Article  CAS  Google Scholar 

  5. T. C. Back, A. K. Schmid, S. B. Fairchild, et al., “Work function characterization of directionally solidified LaB6–VB2 eutectic,” Ultramicroscopy, 183, 67 – 71 (2017); https://www.sciencedirect.com/science/article/pii/S0304399116304156.

    Article  CAS  Google Scholar 

  6. X. Yang, P. Wang, Z. Wang, et al., “Microstructure, mechanical and thermionic emission properties of a directionally solidified LaB6–VB2 eutectic composite,” Mater. Des., 133, 299 – 306 (2017); https://www.sciencedirect.com/science/article/pii/S0264127517307463.

    Article  CAS  Google Scholar 

  7. M. M. Hasan, D. Cuskelly, H. Sugo, et al., “Low temperature synthesis of low thermionic work function (LaxBa1–x)B6,” J. Alloys Compd., 636, 67 – 72 (2015); https://www.sciencedirect.com/science/article/pii/S0925838815005344.

    Article  CAS  Google Scholar 

  8. D. A. Voronovich, A. A. Taran, N. Yu. Shitsevalova, et al., “Thermionic properties of lutetium borides single crystals,” Funct. Mater., 3, 266 – 273 (2014); http://dspace.nbuv.gov.ua/handle/123456789/120444.

    Article  Google Scholar 

  9. H. Deng, E. C. Dickey, Y. Paderno, et al., “Crystallographic characterization and indentation mechanical properties of LaB6–ZrB2 directionally solidified eutectics,” J. Mater. Sci., 39(19), 5987 – 5994 (2004); https://link.springer.com/article/10.1023/B:JMSC.0000041695.40772.56.

    Article  CAS  Google Scholar 

  10. Bogomol, T. Nishimura, O. Vasylkiv, et al., “High-temperature strength of directionally reinforced LaB6–TiB2 composite,” J. Alloys Compd., 505(1), 130 – 134 (2010); https://www.sciencedirect.com/science/article/pii/S0925838810011199.

    Article  CAS  Google Scholar 

  11. H. Volkova, V. Filipov, and Yu. Podrezov, “The influence of Ti addition on fracture toughness and failure of directionally solidified LaB6–ZrB2 eutectic composite with monocrystalline matrix,” J. Eur. Ceram. Soc., 34(14), 3399 – 3405 (2014); https://www.sciencedirect.com/science/article/pii/S0955221914001678.

    Article  CAS  Google Scholar 

  12. Bogomol, T. Nishimura, Yu. Nesterenko, et al., “The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite,” J. Alloys Compd., 509(20), 6123 – 6129 (2011); https://www.sciencedirect.com/science/article/pii/S0925838811006335.

  13. Yu. B. Paderno, “A new class of ‘in-situ’ fiber reinforced boride composite ceramic materials,” in: Advanced Multilayered and Fibre-Reinforced Composites, Y. M. Haddad (ed.), Springer Netherlands, 1998, pp. 353 – 369. https://link.springer.com/chapter/10.1007/978-94-007-0868-6 23.

  14. G. H. Min, R. Gao, H. S. Yu, et al., “Mechanical properties of LaB6–ZrB2 composites,” Key Eng. Mater., 297, 1630 – 1638 (2005); https://www.scientific.net/KEM.297-300.1630.

    Article  Google Scholar 

  15. L. Xiao, Y. Su, X. Zhou, et al., “Origins of high visible light transparency and solar heat-shielding performance in LaB6,” Appl. Phys. Lett., 101(4), 041913 (2012); https:// aip.scitation.org/doi/abs/10.1063/1.4733386.

  16. S. Yoshio, K. Maki, and K. Adachi, “Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations,” J. Chem. Phys., 144(23), 234702 (2016); https://aip.scitation.org/doi/abs/10.1063/1.4953849.

    Article  Google Scholar 

  17. T. M. Mattox, D. K. Coffman, I. Roh, et al., “Moving the plasmon of LaB6 from IR to near-IR via Eu-doping,” Materials, 11(2), 226 (2018); https://www.mdpi.com/1996-1944/11/2/226.

    Article  Google Scholar 

  18. X. Qi, L. Bao, L. Chao, et al., “Experimental and theoretical investigation on tunable optical property of nanocrystalline Ca-doped CeB6,” Phys. B (Amsterdam, Neth.), 530, 312 – 316 (2018); https://www.sciencedirect.com/science/article/pii/S0921452617309882.

    Article  CAS  Google Scholar 

  19. E. Sani, L. Mercatelli, M. Meucci, et al., “Lanthanum hexaboride for solar energy applications,” Sci. Rep., 7(1), 718 (2017); https://www.nature.com/articles/s41598-017-00749-w.

    Article  Google Scholar 

  20. F. Monteverde, D. Alfano, and R. Savino, “Effects of LaB6 addition on arc-jet convectively heated SiC-containing ZrB2-based ultra-high temperature ceramics in high enthalpy supersonic airflows,” Corros. Sci., 75, 443 – 453 (2013); https://www.sciencedirect.com/science/article/pii/S0010938X13002722.

    Article  CAS  Google Scholar 

  21. S. S. Ordan’yan, Yu. B. Paderno, I. K. Khoroshilova, et al., “Interaction in the LaB6–ZrB2 system,” Powder Metall. Met. Ceram., 22(11), 946 – 948 (1983); https://link.springer.com/article/10.1007/BF00805556.

    Article  Google Scholar 

  22. S. S. Ordan’yan, Yu. B. Paderno, I. K. Khoroshilova, et al., “Interaction in the LaB6–HfB2 system,” Sov. Powder Metall. Met. Ceram., 23(2), 157 – 159 (1984); https://link.springer.com/article/10.1007/BF00792275.

    Article  Google Scholar 

  23. S. S. Ordan’yan, Yu. B. Paderno, E. E. Nikolaeva, et al., “Interaction in the LaB6–CrB2 system,” Powder Metall. Met. Ceram., 23(5), 387 – 389 (1984); https://link.springer.com/article/10.1007/BF00796605.

    Article  Google Scholar 

  24. S. S. Ordan’yan and E. E. Nikolaeva, “Interaction in the GdB6–TiB2 system,” Powder Metall. Met. Ceram., 26(1), 51 – 53 (1987); https://link.springer.com/article/10.1007/BF00794265.

    Google Scholar 

  25. S. S. Ordan’yan, I. K. Khoroshilova, and E. E. Nikolaeva, “Interaction in GdB6–MVB2 systems,” Neorg. Mater., 26(8), 1635 – 1637 (1990).

    Google Scholar 

  26. P. I. Loboda, G. P. Kisla, I. I. Bogomol, et al., “Phase relations in the LaB6–MoB2 system,” Inorg. Mater., 45(3), 246 – 249 (2009); https://link.springer.com/article/10.1134/S0020168509030042.

    Article  CAS  Google Scholar 

  27. G. Kysla and P. Loboda, “Ceramic materials of the quasi-binary LaB6–MoB2 system,” Process. Appl. Ceram., 1(1/2), 19 – 22 (2007); http://www.tf.uns.ac.rs/publikacije/PAC/pdf/04%20PAC%2001.pdf.

    Article  CAS  Google Scholar 

  28. G. P. Kysla, P. I. Loboda, and L. Geshmati, “Structure of the eutectic in the LaB6–ScB2 system,” Powder Metall. Met. Ceram., 53(7/8), 479 – 484 (2014); https://link.springer.com/article/10.1007/s11106-014-9640-0.

    Article  CAS  Google Scholar 

  29. P. I. Loboda, G. P. Kisla, M. O. Sisoev, et al., “Eutectics in the LaB6Me2B5 system,” Metalozn. Obrob. Met., No. 3, 29 (2010); http://bit.ly/34lgTLr.

  30. S. S. Ordan’yan, D. D. Nesmelov, and S. V. Vikhman, “Phase relations in the LaB6–W2B5 system,” Inorg. Mater., 45(7), 754 – 757 (2009); https://link.springer.com/article/10.1134/S0020168509070097.

    Article  Google Scholar 

  31. R. Gao, G. Min, H. Yu, et al., “Fabrication and oxidation behavior of LaB6–ZrB2 composites,” Ceram. Int., 31(1), 15 – 19 (2005); https://www.sciencedirect.com/science/article/pii/S0272884204002895.

    Article  CAS  Google Scholar 

  32. C.-M. Chen, L. T. Zhang, W. C. Zhou, et al., “Microstructure, mechanical performance and oxidation mechanism of boride in situ composites,” Compos. Sci. Technol., 61(7), 971 – 975 (2001); https://www.sciencedirect.com/science/article/pii/S0266353800001871.

    Article  CAS  Google Scholar 

  33. X. Wang, J. X. Zhang, X. Y. Yang, et al., “Spark plasma sintering of LaB6–(Ti, Zr)B2 composites,” Adv. Appl. Ceram., 116(3), 132 – 137 (2017); https://www.tandfonline.com/doi/abs/10.1080/17436753.2016.1264139.

    Article  CAS  Google Scholar 

  34. X. Yang, X. Wang, P. Wang, et al., “Spark plasma sintering of SiC–LaB6 composite,” J. Alloys Compd., 704, 329 – 335 (2017); https://www.sciencedirect.com/science/article/pii/S0925838817304498.

    Article  CAS  Google Scholar 

  35. S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov, et al., “Nonoxide high-melting point compounds as materials for extreme conditions,” Adv. Sci. Technol., 89, 47 – 56 (2014); https://www.scientific.net/AST.89.47.

    Article  Google Scholar 

  36. S. S. Ordan’yan and D. D. Nesmelov, “Grain growth during free sintering of refractory boride ceramics LaB6, TiB2, and W2B5,” Ogneupory Tekh. Keram., No. 3, 24 – 31 (2014); http:// bit.ly/37CrfbX.

  37. C.-M. Chen, L. T. Zhang, and W. C. Zhou, “Characterization of LaB6–ZrB2 eutectic composite grown by the floating zone method,” J. Cryst. Growth, 191(4), 873 – 878 (1998); https://www.sciencedirect.com/science/article/pii/S0022024898003583.

    Article  CAS  Google Scholar 

  38. W.-T. Chen, R. M. White, T. Goto, et al., “Directionally solidified boride and carbide eutectic ceramics,” J. Am. Ceram. Soc., 99(6), 1837 – 1851 (2016); https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/jace.14287.

    Article  CAS  Google Scholar 

  39. Yu. B. Paderno, V. N. Paderno, and V. B. Filippov, “Directionally crystallized ceramicfiber-reinforced boride composites,” Refract. Ind. Ceram., 41(11), 373 – 378 (2000); https://link.springer.com/article/10.1023/A%3A1011334230820.

    Article  CAS  Google Scholar 

  40. Bogomol and P. Loboda, “Directionally solidified ceramic eutectics for high-temperature applications,” in: MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments, 2013, p. 303; https://www.igi-global.com/chapter/directionally-solidified-ceramiceutectics-for-high-temperature-applications/80036.

  41. H. Deng, E. C. Dickey, and Y. Paderno, et al., “Interface crystallography and structure in LaB6–ZrB2 directionally solidified eutectics,” J. Am. Ceram. Soc., 90(8), 2603 – 2609 (2007); https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-2916.2007.01812.x.

    Article  CAS  Google Scholar 

  42. S. S. Ordan’yan, V. I. Rumyantsev, D. D. Nesmelov, et al., “Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation,” Refract. Ind. Ceram., 53(2), 108 – 111 (2012); https://link.springer.com/article/10.1007/s11148-012-9473-7.

    Article  Google Scholar 

  43. P. Thangadurai, A. C. Bose, and S. Ramasamy, “Phase stabilization and structural studies of nanocrystalline La2O3–ZrO2,” J. Mater. Sci., 40(15), 3963 – 3968 (2005); https://link.springer.com/article/10.1007/s10853-005-2831-9.

    Article  CAS  Google Scholar 

  44. F. Gonell, D. Portehault, B. Julian-Lopez, et al., “One step microwave-assisted synthesis of nanocrystalline WOx–ZrO2 acid catalysts,” Catal. Sci. Technol., 6(23), 8257 – 8267 (2016); https://pubs.rsc.org/en/content/articlelanding/2016/cy/c6cy01082b/unauth#!divAbstract.

    Article  CAS  Google Scholar 

  45. N. Aghaeenejad, A. Bahari, M. Riazian, et al., “Fabrication and nano structural study on La2O3–Co3O4–ZrO2 composite,” Int. J. Nano Dimens., 6, 39 – 44 (2015); http://bit.ly/2OJLNGN.

    CAS  Google Scholar 

Download references

Acknowledgement

The work was sponsored by an RFBR Grant, Project No. 18-33-20221 mol_a_ved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Nesmelov.

Additional information

Translated from Novye Ogneupory, No. 8, pp. 38 – 43, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesmelov, D.D., Kozhevnikov, O.A., Vikhman, S.V. et al. Synthesis of LaB6–ZrB2 Powder Mixture by Borothermal Reduction of La(OH)3 and ZrO(OH)2 Coprecipitated in Boron Suspension. Refract Ind Ceram 60, 389–393 (2019). https://doi.org/10.1007/s11148-019-00373-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00373-3

Keywords

Navigation