Skip to main content
Log in

A few important features of global atmospheric boundary layer heights estimated using COSMIC radio occultation retrieved data

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This research reports the global atmospheric boundary layer height (ABLH, which is also known as the planetary boundary layer, PBLH) features estimated using COSMIC radio occultation (RO) retrieved temperature profiles during March, April, and May in 2015. Important analytical techniques including the vertical gradient and logarithmic gradient methods applied effectively on temperature profiles have revealed a few interesting features. Mainly, west coasts of the majority of the continents are associated with relatively lower magnitudes during the daytime hours, first of its kind observations reported using a space-based remote sensing technique. Secondly, over landmasses and desert areas, ABLHs show relatively higher magnitudes during the daytime hours, due to higher sensible heat flux. Thirdly, the cold land areas show relatively lower ABLHs, whereas cold oceans depict moderately higher values. In order to explain relatively low marine ABL (MABL) heights over the west coasts of the continents, we present a schematic diagram which includes various possible physical mechanisms that might be responsible for these extremely low MABL heights. This research emphasizes that the COSMIC RO is a powerful global technique, which is able to unravel the link between ocean and the Earth’s lower atmospheric dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R B Stull An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers Germany) (1988)

  2. A K Betts and J H Ball J Geophy. Res.99 2 (1994)

  3. S A Margulis and D Entekhabi Boundary-Layer Meteorology, 110 3 (2004)

  4. F J Wentz, T Meissner, J Scott and K A Hilburn Remote Sensing Systems Santa Rosa CA (2015)

  5. R L Coulter J. Appl. Meteorol.18 1495 (1979)

    Article  ADS  Google Scholar 

  6. A Arakawa and W H Schubert J. Atmos. Sci.31 674 (1974)

  7. M J Suarez, A Arakawa and D A Randall Mon. Weather Rev.111 2224 (1983)

    Article  ADS  Google Scholar 

  8. M L Wesely, D R Cook, R L Hart and R E Speer J. Geophys. Res.90 2131 (1985)

    Article  ADS  Google Scholar 

  9. B Stevens Q. J. R. Meteorolog. Scc.128 2663 (2002)

    Article  ADS  Google Scholar 

  10. C S Konor, G C Boezio, C R Mechoso and A Arakawa Mon. Weather Rev.137 1061 (2009)

    Article  ADS  Google Scholar 

  11. J R Garratt Cambridge University Press, 315 (1994)

  12. S-J Lee, J Lee, S J Greybush, M Kang, and J Kim Advances in Meteorology, 2013 381630 (2013)

  13. S-J Lee, J Kim and C-H Cho Environmental Monitoring and Assessment, 186 5 (2014)

  14. J H Marsham, D J Parker, C M Grams, B T Johnson, W M F Grey and A N Ross, Atmospheric Chemistry and Physics, 8 23 (2008)

    Google Scholar 

  15. M Gamo, Boundary-Layer Meteorology, 79 3 (1996)

    Article  Google Scholar 

  16. Q He and A Mamtimin Arid Meteorology25 2 (2007)

  17. P Seibert, F Beyrich, S Gryning, S Joffre, A Rasmussen, P. Tercier, Atmospheric Environment, 34 7 (2000)

    Google Scholar 

  18. S A Cohn and W M Angevine, J. Appl. Meteor. 39, 1233 (2000)

  19. A Molod, H Salmun M Dempsey, J. Atmos. Oceanic Technol.32 (2015)

  20. F Beyrich Atmospheric Environment31 3941 (1997)

  21. G Martucci, C Milroy and C D O’Dowd, J. Atmos. Oceanic Technol., 27 305 (2010)

    Article  ADS  Google Scholar 

  22. C-Z F Cheng, Y-H Kuo, R A Anthes and L Wu, Eos Trans. AGU, 87 17 (2006)

  23. Brahmanandam P S, Chu YH, and Liu J Terr. Atmos. Oceanic Sci. 21(5) 829 (2010)

  24. Anisetty, P Rao, P S Brahmanandam, G Uma and others J. Meteor. Res., 28(2) 281 (2014)

  25. G Uma, P S Brahmanandam, Y H Chu, Advances in Space Research,57 12 (2016)

    Google Scholar 

  26. C O Ao, T K Chan, B A Iijima, J -L Li, A J Mannucci, J Teixeira, B. Tian and D E Waliser, Proc. of the ECMWF GRAS SAF Workshop on Applications of GPS Radio Occultation Measurements, 16–18 June 2008, Reading, UK, 123 (2008)

  27. G Basha and M V Ratnam, J. Geophys. Res., 114 D16101 (2009)

  28. S C Sokolovskiy, R D Hunt, W Schreiner, J Johnson, D Masters and S. Esterhuizen, Geophys. Res. Lett.33, L14816

  29. D J Seidel, C O Ao and K Li (2010), J. Geophys. Res., 115 D16113 (2010)

  30. X Y Wang and K C Wang, Atmospheric Measurement Techniques, 7 6 (2014)

  31. S Emeis, Schafer K and C. Munkel, Meteorol. Z., 17 5 (2008)

  32. T R Parish Mon. Wea. Rev., 144, 2963 (2016)

  33. Naveen et al., Ind. J. Sci. Techno., 11 31 (2018)

  34. B Stevens, Annual Review of Earth and Planetary Sciences33 1 (2005)

    Article  Google Scholar 

  35. B Medeiro, A Hall J Scott and K A Hilbum Remote Sensing Systems Santa Roas, CA (2015)

  36. C H Tijm-Reijmer, Utrecht Summer School on Physics of the Climate system, Utrecht University, The Netherlands, 1–30 (2016)

  37. A von Engeln and J Teixeira, Journal of Climate26 (2013)

  38. S J Fan, Q Fan, W Yu, X Y Luo, B M Wang, L L Song, K L Leong, Atmos. Chem. Phys., 11 (2011)

  39. D P Dee, S M Uppala, A J Simmons, Quarterly Journal of Royal Meteorological Society, 137 (2011)

  40. X Chen, J A Añel, Z Su Z, L de la Torre, H Kelder H, PLOS ONE, 8 2 (2013)

    Google Scholar 

  41. C O Ao, G A Hajj, T K Meehan, D Dong, B A Iijima, A J Mannucci and E R Kursinski, J. Geophys. Res., 114 D04101 (2009)

    Article  ADS  Google Scholar 

  42. C O Ao, D E Waliser, S K Chan, J–L Li, B Tian, F Xie, A J Mannucci, J. Geophys. Res., 117 D16117 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The corresponding author, Dr. P. S. Brahmanandam, gratefully acknowledges the Management of SVECW (Autonomous), Bhimavaram, Andhra Pradesh, India, for their logistic support, without which it would not have been possible to publish this important research work. The COSMIC RO temperature data are archived from the COSMIC Data Analysis and Archive Center (CDAAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Brahmanandam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahmanandam, P.S., Kumar, V.N., Kumar, G.A. et al. A few important features of global atmospheric boundary layer heights estimated using COSMIC radio occultation retrieved data. Indian J Phys 94, 555–563 (2020). https://doi.org/10.1007/s12648-019-01514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01514-7

Keywords

PACS Nos.

Navigation