Skip to main content
Log in

Explicit Estimates on the Torus for the Sup-norm and the Crest Factor of Solutions of the Modified Kuramoto–Sivashinky Equation in One and Two Space Dimensions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the Modified Kuramoto–Sivashinky Equation (MKSE) in one and two space dimensions and we obtain explicit and accurate estimates of various Sobolev norms of the solutions. In particular, by using the sharp constants which appear in the functional interpolation inequalities used in the analysis of partial differential equations, we evaluate explicitly the sup-norm of the solutions of the MKSE. Furthermore we introduce and then compute the so-called crest factor associated with the above solutions. The crest factor provides information on the distortion of the solution away from its space average and therefore, if it is large, gives evidence of strong turbulence. Here we find that the time average of the crest factor scales like \(\lambda ^{(2d-1)/8}\) for \(\lambda \) large, where \(\lambda \) is the bifurcation parameter of the source term and \(d=1,2\) is the space dimension. This shows that strong turbulence cannot be attained unless the bifurcation parameter is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ambrose, D.M., Mazzucato, A.L.: Global existence and analyticity for the \(2D\) Kuramoto–Sivashinsky equation. J. Dyn. Differ. Equ. (2018). https://doi.org/10.1007/s10884-018-9656-0

  3. Babin, A.V., Vishik, M.I.: Attractors for Evolution Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  4. Bartuccelli, M.V.: Sharp constants for the \(L^{\infty }\)-norm on the torus and applications to dissipative partial differential equations. Differ. Integral Equ. 27(1–2), 59–80 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bartuccelli, M.V.: Explicit estimates on the torus for the sup-norm and the dissipative length scale of solutions of the Swift–Hohenberg equation in one and two space dimensions. J. Math. Anal. Appl. 411(1), 166–176 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bartuccelli, M.V., Doering, C.R., Gibbon, J.D., Malham, S.A.: Length scales in solutions of the Navier–Stokes equations. Nonlinearity 6, 549–568 (1993)

    Article  MathSciNet  Google Scholar 

  7. Bartuccelli, M.V., Deane, J.H.B., Zelik, S.: Asymptotic expansions and extremals for the critical Sobolev and Gagliardo–Nirenberg inequalities on a torus. Proc. R. Soc. Edinb. Sect. A 143(3), 445–482 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bartuccelli, M.V., Gibbon, J.D.: Sharp constants in the Sobolev embedding theorem and a derivation of the Brezis–Gallouet interpolation inequality. J. Math. Phys. 52(9), 093706 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bartuccelli, M.V., Gibbon, J.D., Oliver, M.: Length scales in solutions of the complex Ginzburg–Landau equation. Phys. D 89(3–4), 267–286 (1996)

    Article  MathSciNet  Google Scholar 

  10. Bartuccelli, M.V., Gourley, S.A., Ilyin, A.A.: Positivity and the attractor dimension in a fourth-order reaction diffusion equation. Proc. R. Soc. Lond. Ser. A 458(2022), 1431–1446 (2002)

    Article  MathSciNet  Google Scholar 

  11. Benachour, S., Kukavica, I., Rusin, W., Ziane, M.: Anisotropic estimates for the two-dimensional Kuramoto–Sivashinsky equation. J. Dyn. Differ. Equ. 26, 461–476 (2014)

    Article  MathSciNet  Google Scholar 

  12. Collet, P., Eckmann, J.-P., Epstein, H., Stubbe, J.: A global attracting set for the Kuramoto–Sivashinsky equation. Comm. Math. Phys. 152, 203–214 (1993)

    Article  MathSciNet  Google Scholar 

  13. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Sciences 70. Springer, New York (1989)

  14. Constantin, P., Foias, C., Temam, R.: On the dimension of the attractors in two-dimensional turbulence. Phys. D 30(3), 284–296 (1988)

    Article  MathSciNet  Google Scholar 

  15. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  16. Dascaliuc, R., Foias, C., Jolly, M.S.: Relations between the energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations. J. Dyn. Differ. Equ. 17(4), 643–736 (2005)

    Article  MathSciNet  Google Scholar 

  17. Doering, C.R., Gibbon, J.D.: Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  18. Górka, P.: Brézis–Wainger inequality on Riemannian manifolds. J. Inequal. Appl. (2008), Art. ID 715961

  19. Hyman, J.M., Nicolaenko, B.: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)

    Article  MathSciNet  Google Scholar 

  20. Ilyin, A.: Best constants in multiplicative inequalities for sup-norms. J. Lond. Math. Soc. 58(1), 84–96 (1998)

    Article  MathSciNet  Google Scholar 

  21. Ilyin, A.: Lieb–Thirring integral inequalities and their applications to attractors of Navier–Stokes equations. Sb. Math. 196(1–2), 29–61 (2005)

    Article  MathSciNet  Google Scholar 

  22. Ilyin, A., Titi, E.S.: Sharp estimates for the number of degrees of freedom for the damped-driven 2D Navier–Stokes equations. J. Nonlinear Sci. 16(3), 233–253 (2006)

    Article  MathSciNet  Google Scholar 

  23. Jolly, M., Kevrekidis, I., Titi, E.: Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computation. Phys. D 44, 38–60 (1990)

    Article  MathSciNet  Google Scholar 

  24. Kramer, L., Zimmermann, W.: On the Eckhaus instability for spatially periodic patterns. Phys. D 16(2), 221–232 (1985)

    Article  Google Scholar 

  25. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  Google Scholar 

  26. Mazja, V.G.: Sobolev Spaces. Springer, New York (1985)

    Book  Google Scholar 

  27. Mazya, V., Shaposhnikova, T.: Brezis–Gallouet–Wainger type inequality for irregular domains. Complex Var. Elliptic Equ. 56(10–11), 991–1002 (2011)

    Article  MathSciNet  Google Scholar 

  28. Molinet, L.: Local dissipativity in \(L_2\) for the Kuramoto–Sivashinsky equation in spatial dimensions \(2\). J. Dyn. Differ. Equ. 12, 533–556 (2000)

    Article  Google Scholar 

  29. Peletier, L.A., Rottschafer, V.: Pattern selection of solutions of the Swift–Hohenberg equation. Phys. D 194(1–2), 95–126 (2004)

    Article  MathSciNet  Google Scholar 

  30. Peletier, L.A., Troy, W.C.: Chaotic spatial patterns described by the extended Fisher–Kolmogorov equation. J. Differ. Equ. 129(996), 458–508 (1996)

    Article  MathSciNet  Google Scholar 

  31. Peletier, L.A., Williams, J.F.: Some canonical bifurcations in the Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 6(1), 208–235 (2007)

    Article  MathSciNet  Google Scholar 

  32. Pomeau, Y., Manneville, P.: Stability and fluctuations of a spatially periodic convective flow. J. Phys. Lett. 40(23), 609–612 (1979)

    Article  Google Scholar 

  33. Pomeau, Y., Zaleski, S.: Wavelength selection in one-dimensional cellular structures. J. Phys. 42(4), 515–528 (1981)

    Article  MathSciNet  Google Scholar 

  34. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  35. Sivashinsky, G.: Nonlinear analysis of hydrodynamic instability in laminar flame. I. Derivation of basic equations. Acta Astronaut. 4, 1117–1206 (1977)

    Article  MathSciNet  Google Scholar 

  36. Sell, G.R., Taboada, M.: Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin \(2D\) domains. Nonlinear Anal. Theory Methods Appl. 18, 671–687 (1992)

    Article  Google Scholar 

  37. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection, 2nd edn. Applied Mathematical Sciences 91. Springer, New York (2004)

  38. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  39. Tadmor, E.: The well-posedness of the Kuramoto–Sivashinsky equation. SIAM J. Math. Anal. 17, 884–893 (1986)

    Article  MathSciNet  Google Scholar 

  40. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn. Applied Mathematical Sciences 68. Springer, Berlin (1997)

  41. Tomlin, R.J., Kalogirou, A., Papageorgiou, D.T.: Nonlinear dynamics of a dispersive anisotropic Kuramoto–Sivashinsky equation in two space dimensions. Proc. R. Soc. Lond. 474(2211), 20170687 (2018)

    Article  MathSciNet  Google Scholar 

  42. Xie, W.: Integral representations and \(L^{\infty }\) bounds for solutions of the Helmholtz equation on arbitrary open sets in \(R^2\) and \(R^3\). Differ. Integral Equ. 8(3), 689–698 (1995)

    MathSciNet  Google Scholar 

  43. Xie, W.: Sharp Sobolev interpolation inequalities for the Stokes operator. Differ. Integral Equ. 10(2), 393–399 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge very helpful discussions with Paolo Secchi and Davide Catania on ideas and techniques closely related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele V. Bartuccelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartuccelli, M.V., Deane, J.H. & Gentile, G. Explicit Estimates on the Torus for the Sup-norm and the Crest Factor of Solutions of the Modified Kuramoto–Sivashinky Equation in One and Two Space Dimensions. J Dyn Diff Equat 32, 791–807 (2020). https://doi.org/10.1007/s10884-019-09762-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09762-1

Keywords

Mathematics Subject Classification

Navigation