Skip to main content

Advertisement

Log in

Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zhou, Y., Tong, D., Wang, S., Ye, S., Xu, B., & Yang, C. (2018). Acute spontaneous intracerebral hemorrhage and traumatic brain injury are the most common causes of critical illness in the ICU and have high early mortality. BMC Neurology, 18, 127.

    PubMed  PubMed Central  Google Scholar 

  2. Rubiano, A., Carney, N., Chesnut, R., & Puyana, J. (2015). Global neurotrauma research challenges and opportunities. Nature, 527, S193–S197.

    CAS  PubMed  Google Scholar 

  3. Quinsey, C., Eaton, J., Northam, W., Gilleskie, M., Charles, A., & Hadar, E. (2018). Challenges and opportunities for effective data collection in global neurosurgery: Traumatic brain injury surveillance experience in Malawi. Neurosurgical Focus, 45, E10.

    PubMed  Google Scholar 

  4. Roozenbeek, B., Maas, A., & Menon, D. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews. Neurology, 9, 231–236.

    PubMed  Google Scholar 

  5. Peeters, W., Majdan, M., Brazinova, A., Nieboer, D., & Maas, A. I. R. (2017). Changing epidemiological patterns in traumatic brain injury: A longitudinal hospital-based study in Belgium. Neuroepidemiology, 48, 63–70.

    PubMed  Google Scholar 

  6. Ye, X., Asim, M., & Michael, C. (2018). Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology, 21(3), 137–151.

    Google Scholar 

  7. Edward, J. G., Aurélie, L., Ann-Charlotte, G., Elahi, F. M., Goetzl, L., Hiramoto, J., & Kapogiannis, D. (2019). Neuron-derived exosome proteins may contribute to progression from repetitive mild traumatic brain injuries to chronic traumatic encephalopathy. Frontiers in Neuroscience, 13, 452.

    Google Scholar 

  8. Harrison, E. B., Hochfelder, C. G., Lamberty, B. G., Meays, B. M., Morsey, B. M., Kelso, M. L., Fox, H. S., & Yelamanchili, S. V. (2016). Traumatic brain injury increases levels of miR-21 in extracellular vesicles: Implications for neuroinflammation. FEBS Open Bio, 6(8), 835–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, R. T., Zhou, J., Dong, X. L., Bi, C. W., Jiang, R. C., Dong, J. F., Tian, Y., Yuan, H. J., & Zhang, J. N. (2018). Circular ribonucleic acid expression alteration in Exosomes from the brain extracellular space after traumatic brain injury in mice. Journal of Neurotrauma, 35(17), 2056–2066.

    PubMed  Google Scholar 

  10. Wang, Y., Liu, Y., Lopez, D., Lee, M., Dayal, S., Hurtado, A., Bi, X., & Baudry, M. (2018). Protection against TBI-induced neuronal death with post-treatment with a selective Calpain-2 inhibitor in mice. Journal of Neurotrauma, 35(1), 105–117.

    PubMed  PubMed Central  Google Scholar 

  11. Saatman, K. E., Duhaime, A. C., Bullock, R., Maas, A. I., Valadka, A., Manley, G. T., Workshop Scientific Team, & Advisory Panel Members. (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7), 719–738.

    PubMed  PubMed Central  Google Scholar 

  12. Bramlett, H., & Dietrich, W. (2004). Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. Journal of Cerebral Blood Flow and Metabolism, 24(2), 133–150.

    PubMed  Google Scholar 

  13. Zhou, J., Burns, M., Huynh, L., Villapol, S., Taub, D., Saavedra, J., & Blackman, M. (2017). Temporal changes in cortical and hippocampal expression of genes important for brain glucose metabolism following controlled cortical impact injury in mice. Frontiers in Endocrinology (Lausanne), 8, 231.

    Google Scholar 

  14. Jha, R. M., Elmer, J., Zusman, B. E., Desai, S., Puccio, A. M., Okonkwo, D. O., Park, S. Y., Shutter, L. A., Wallisch, J. S., Conley, Y. P., & Kochanek, P. M. (2018). Intracranial pressure trajectories: A novel approach to informing severe traumatic brain injury phenotypes. Critical Care Medicine, 46, 1792–1802.

    PubMed  PubMed Central  Google Scholar 

  15. Grandhi, R., Bonfield, C. M., Newman, W. C., & Okonkwo, D. O. (2014). Surgical management of traumatic brain injury: A review of guidelines, pathophysiology, neurophysiology, outcomes, and controversies. Journal of Neurosurgical Sciences, 58(4), 249–259.

    CAS  PubMed  Google Scholar 

  16. Fujimoto, M., Shiba, M., Kawakita, F., Liu, L., Shimojo, N., Imanaka-Yoshida, K., Yoshida, T., & Suzuki, H. (2016). Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. Journal of Neurosurgery, 124(6), 1693–1702.

    CAS  PubMed  Google Scholar 

  17. Kimbler, D., Shields, J., Yanasak, N., Vender, J., & Dhandapani, K. (2012). Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One, 7(7), e41229.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z., Wu, Y., Yuan, S., Zhang, P., Zhang, J., Li, H., Li, X., Shen, H., Wang, Z., & Chen, G. (2018). Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Research, 1701, 112–125.

    CAS  PubMed  Google Scholar 

  19. Hall, E., Gibson, T., & Pavel, K. (2005). Lack of a gender difference in post-traumatic neurodegeneration in the mouse controlled cortical impact injury model. Journal of Neurotrauma, 22(6), 669–679.

    PubMed  Google Scholar 

  20. Weiss, O., Hendler, R., Canji, E., Morad, T., Foox, M., Francis, Y., Dubinski, Z., Merfeld, I., Hammer, L., & Baranes, D. (2018). Modulation of scar tissue formation in injured nervous tissue cultivated on surface-engineered coralline scaffolds. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 106(6), 2295–2306.

    CAS  PubMed  Google Scholar 

  21. Fitch, M., & Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology, 209(2), 294–301.

    CAS  PubMed  Google Scholar 

  22. Gao, Y., Zhang, Z., Zhuang, Z., Lu, Y., Wu, L., Ye, Z., Zhang, X., Chen, C., Li, W., & Hang, C. (2018). Recombinant milk fat globule-EGF factor-8 reduces apoptosis via integrin β3/FAK/PI3K/AKT signaling pathway in rats after traumatic brain injury. Cell Death & Disease, 9(9), 845.

    CAS  Google Scholar 

  23. Dukhinova, M., Kuznetsova, I., Kopeikina, E., Veniaminova, E., Yung, A. W. Y., Veremeyko, T., Levchuk, K., Barteneva, N. S., Wing-Ho, K. K., Yung, W. H., Liu, J. Y. H., Rudd, J., Yau, S. S. Y., Anthony, D. C., Strekalova, T., & Ponomarev, E. D. (2018). Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain, Behavior, and Immunity, 74, 7–27.

    PubMed  Google Scholar 

  24. Narotam, P., Morrison, J., & Nathoo, N. (2009). Brain tissue oxygen monitoring in traumatic brain injury and major trauma: Outcome analysis of a brain tissue oxygen-directed therapy. Journal of Neurosurgery, 111(4), 672–682.

    PubMed  Google Scholar 

  25. Wang, J., Xu, Z., Chen, X., Li, Y., Chen, C., Wang, C., Zhu, J., Wang, Z., Chen, W., Xiao, Z., & Xu, R. (2018). MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting toll-like receptor 4. Biochemical and Biophysical Research Communications, 505, 677–684.

    CAS  PubMed  Google Scholar 

  26. Janyou, A., Wicha, P., Jittiwat, J., Suksamrarn, A., Tocharus, C., & Tocharus, J. (2017). Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Scientific Reports, 7(1), 10556.

    PubMed  PubMed Central  Google Scholar 

  27. Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., Wang, B., Xiao, Z., Zhang, S., & Dai, J. (2017). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials, 137, 73–86.

    CAS  PubMed  Google Scholar 

  28. Soller, E., Tzeranis, D., Miu, K., So, P., & Yannas, I. (2012). Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials, 33(19), 4783–4791.

    CAS  PubMed  Google Scholar 

  29. Vining, K., & Mooney, D. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews. Molecular Cell Biology, 18(12), 728–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Heisenberg, C., & Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell, 153(5), 948–962.

    CAS  PubMed  Google Scholar 

  31. Chen, X., Xu, M., Wang, C., Zhang, L., Zhao, Y., Zhu, C., Chen, Y., Wu, J., Yang, Y., & Wang, X. (2018). A partition-type tubular scaffold loaded with PDGF-releasing microspheres for spinal cord repair facilitates the directional migration and growth of cells. Neural Regeneration Research, 13(7), 1231–1240.

    PubMed  PubMed Central  Google Scholar 

  32. Arulmoli, J., Wright, H. J., Phan, D. T. T., Sheth, U., Que, R. A., Botten, G. A., Keating, M., Botvinick, E. L., Pathak, M. M., Zarembinski, T. I., Yanni, D. S., Razorenova, O. V., Hughes, C. C. W., & Flanagan, L. A. (2016). Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomaterialia, 43, 122–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duan, H., Li, X., Wang, C., Hao, P., Song, W., Li, M., Zhao, W., Gao, Y., & Yang, Z. (2016). Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomaterialia, 45, 182–195.

    CAS  PubMed  Google Scholar 

  34. Zhang, J. C., Zheng, G. F., Wu, L., Ou Yang, L. Y., & Li, W. X. (2014). Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Brazilian Journal of Medical and Biological Research, 47(10), 886–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tetzlaff, W., Okon, E. B., Karimi-Abdolrezaee, S., Hill, C. E., Sparling, J. S., Plemel, J. R., Plunet, W. T., Tsai, E. C., Baptiste, D., Smithson, L. J., Kawaja, M. D., Fehlings, M. G., & Kwon, B. K. (2011). A systematic review of cellular transplantation therapies for spinal cord injury. Journal of Neurotrauma, 28(8), 1611–1682.

    PubMed  PubMed Central  Google Scholar 

  36. Assinck, P., Duncan, G., Hilton, B., Plemel, J., & Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 20(5), 637–647.

    CAS  PubMed  Google Scholar 

  37. Chen, C., Dong, X., Fang, K. H., Yuan, F., Hu, Y., Xu, M., Huang, Y., Zhang, X., Fang, D., & Liu, Y. (2019). Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds. Acta Pharmaceutica Sinica B, 9(3), 557–564.

    PubMed  PubMed Central  Google Scholar 

  38. Yan, F., Li, M., Zhang, H. Q., Li, G. L., Hua, Y., Shen, Y., Ji, X. M., Wu, C. J., An, H., & Ren, M. (2019). Collagen-chitosan scaffold impregnated with bone marrow mesenchymal stem cells for treatment of traumatic brain injury. Neural Regeneration Research, 14(10), 1780–1786.

    PubMed  PubMed Central  Google Scholar 

  39. Sahab, N. S., Oliazadeh, P., Jahanbazi, J.-A. A., Eshaghabadi, A., Samini, F., Ghasemi, S., Asghari, A., & Gorji, A. (2019). Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. Acta Biomaterialia, 92, 132–144.

    Google Scholar 

  40. Skop, N. B., Singh, S., Antikainen, H., Saqcena, C., Calderon, F., Rothbard, D. E., Cho, C. H., Gandhi, C. D., Levison, S. W., & Dobrowolski, R. (2019). Subacute transplantation of native and genetically engineered neural progenitors seeded on microsphere scaffolds promote repair and functional recovery after traumatic brain injury. ASN Neuro, 11, 1759091419830186.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moisenovich, M. M., Plotnikov, E. Y., Moysenovich, A. M., Silachev, D. N., Danilina, T. I., Savchenko, E. S., Bobrova, M. M., Safonova, L. A., Tatarskiy, V. V., Kotliarova, M. S., Agapov, I. I., & Zorov, D. B. (2018). Effect of silk fibroin on Neuroregeneration after traumatic brain injury. Neurochemical Research, 44, 2261–2272. https://doi.org/10.1007/s11064-018-2691-8.

    Article  CAS  PubMed  Google Scholar 

  42. Jahanbazi, J.-A. A., Sahab, N. S., Hosseini, R. H., Ghasemi, S., Borhani-Haghighi, M., Stummer, W., Gorji, A., & Khaleghi, G. M. (2018). Human neural stem/progenitor cells derived from epileptic human brain in a self-assembling peptide Nanoscaffold improve traumatic brain injury in rats. Molecular Neurobiology, 55(12), 9122–9138.

    Google Scholar 

  43. Bonilla, H. C., Zurita, C. M., & Vaquero, C. J. (2018). Platelet-rich plasma-derived scaffolds increase the benefit of delayed mesenchymal stromal cell therapy after severe traumatic brain injury. Cytotherapy, 20(3), 314–321.

    Google Scholar 

  44. Chen, X., Zhao, Y., Li, X., Xiao, Z., Yao, Y., Chu, Y., Farkas, B., Romano, I., Brandi, F., & Dai, J. (2018). Functional multichannel poly(propylene Fumarate)-collagen scaffold with collagen-binding Neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury. Advanced Healthcare Materials, 7(14), e1800315.

    PubMed  Google Scholar 

  45. Jia, W., Jiang, X., Liu, W., Wang, L., Zhu, B., Zhu, H., Liu, X., Zhong, M., Xie, D., Huang, W., Jia, W., Li, S., Liu, X., Zuo, X., Cheng, D., Dai, J., & Ren, C. (2018). Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells. International Journal of Oncology, 52(6), 1787–1800.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zamproni, L. N., Grinet, M. A. V. M., Mundim, M. T. V. V., Reis, M. B. C., Galindo, L. T., Marciano, F. R., Lobo, A. O., & Porcionatto, M. (2019). Rotary jet-spun porous microfibers as scaffolds for stem cells delivery to central nervous system injury. Nanomedicine, 15(1), 98–107.

    CAS  PubMed  Google Scholar 

  47. Curtin, C., Nolan, J. C., Conlon, R., Deneweth, L., Gallagher, C., Tan, Y. J., Cavanagh, B. L., Asraf, A. Z., Harvey, H., Miller-Delaney, S., Shohet, J., Bray, I., O’Brien, F. J., Stallings, R. L., & Piskareva, O. (2018). A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomaterialia, 70, 84–97.

    CAS  PubMed  Google Scholar 

  48. Wu, Y., Wang, J., Shi, Y., Pu, H., Leak, R. K., Liou, A. K. F., Badylak, S. F., Liu, Z., Zhang, J., Chen, J., & Chen, L. (2017). Implantation of brain-derived extracellular matrix enhances neurological recovery after traumatic brain injury. Cell Transplantation, 26(7), 1224–1234.

    PubMed  PubMed Central  Google Scholar 

  49. Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2016). Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. Journal of Tissue Engineering and Regenerative Medicine, 10(10), E419–E432.

    CAS  PubMed  Google Scholar 

  50. Rocamonde, B., Paradells, S., Garcia Esparza, M. A., Vives, M. S., Sauro, S., Ramos, C. M., Pradas, M. M., & Soria, J. M. (2016). Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Injury, 30(2), 208–216.

    PubMed  Google Scholar 

  51. Shi, W., Huang, C. J., Xu, X. D., Jin, G. H., Huang, R. Q., Huang, J. F., Chen, Y. N., Ju, S. Q., Wang, Y., Shi, Y. W., Qin, J. B., Zhang, Y. Q., Liu, Q. Q., Wang, X. B., Zhang, X. H., & Chen, J. (2016). Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomaterialia, 45, 247–261.

    CAS  PubMed  Google Scholar 

  52. Shin, S. S., Grandhi, R., Henchir, J., Yan, H. Q., Badylak, S. F., & Dixon, C. E. (2015). Neuroprotective effects of collagen matrix in rats after traumatic brain injury. Restorative Neurology and Neuroscience, 33(2), 95–104.

    CAS  PubMed  Google Scholar 

  53. Martínez-Ramos, C., Gómez-Pinedo, U., Esparza, M. A., Soria, J. M., Barcia, J. A., & Monleón, P. M. (2015). Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 598, 96–101.

    PubMed  Google Scholar 

  54. Choy, D. K., Nga, V. D., Lim, J., Lu, J., Chou, N., Yeo, T. T., & Teoh, S. H. (2013). Brain tissue interaction with three-dimensional, honeycomb polycaprolactone-based scaffolds designed for cranial reconstruction following traumatic brain injury. Tissue Engineering. Part A, 19(21–22), 2382–2389.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Qu, C., Xiong, Y., Mahmood, A., Kaplan, D. L., Goussev, A., Ning, R., & Chopp, M. (2009). Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. Journal of Neurosurgery, 111(4), 658–665.

    PubMed  PubMed Central  Google Scholar 

  56. Lu, D., Mahmood, A., Qu, C., Hong, X., Kaplan, D., & Chopp, M. (2007). Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery, 61(3), 596–602 discussion 602–603.

    PubMed  PubMed Central  Google Scholar 

  57. Hornung, V., Bauernfeind, F., Halle, A., Samstad, E., Kono, H., Rock, K., Fitzgerald, K., & Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8), 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: Artefacts no more. Trends in Cell Biology, 19(2), 43–51.

    CAS  PubMed  Google Scholar 

  59. Souza-Imberg, A., Carneiro, S. M., Giannotti, K. C., Sant’Anna, S. S., & Yamanouye, N. (2017). Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus. Toxicon, 136, 27–33.

    CAS  PubMed  Google Scholar 

  60. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., & Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.

    CAS  PubMed  Google Scholar 

  61. Février, B., & Raposo, G. (2004). Exosomes: Endosomal-derived vesicles shipping extracellular messages. Current Opinion in Cell Biology, 16(4), 415–421.

    PubMed  Google Scholar 

  62. Alenquer, M., & Amorim, M. J. (2015). Exosome biogenesis, regulation, and function in viral infection. Viruses, 7(9), 5066–5083.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Simons, M., & Raposo, G. (2009). Exosomes-vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), 575–581.

    CAS  PubMed  Google Scholar 

  64. Liang, Y., Qiao, L., Peng, X., Cui, Z., Yin, Y., Liao, H., Jiang, M., & Li, L. (2018). The chemokine receptor CCR1 is identified in mast cell-derived exosomes. American Journal of Translational Research, 10(2), 352–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ranjit, S., Patters, B., Gerth, K., Haque, S., Choudhary, S., & Kumar, S. (2018). Potential neuroprotective role of astroglial exosomes against smoking-induced oxidative stress and HIV-1 replication in the central nervous system. Expert Opinion on Therapeutic Targets, 22(8), 703–714.

    CAS  PubMed  Google Scholar 

  66. Li, J., Tan, M., Xiang, Q., Zhou, Z., & Yan, H. (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thrombosis Research, 154, 96–105.

    CAS  PubMed  Google Scholar 

  67. Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296.

    PubMed  PubMed Central  Google Scholar 

  68. Karunaratne, D., Jafari, M., Ranatunga, R., & Siriwardhana, A. (2015). Natural carriers for siRNA delivery. Current Pharmaceutical Design, 21(31), 4529–4540.

    CAS  PubMed  Google Scholar 

  69. Raposo, G., Nijman, H., Stoorvogel, W., Liejendekker, R., Harding, C., Melief, C., & Geuze, H. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183(3), 1161–1172.

    CAS  PubMed  Google Scholar 

  70. Wang, J., Yao, Y., Chen, X., Wu, J., Gu, T., & Tang, X. (2018). Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomedicine & Pharmacotherapy, 108, 1451–1459.

    CAS  Google Scholar 

  71. Bu, N., Wu, H., Sun, B., Zhang, G., Zhan, S., Zhang, R., & Zhou, L. (2011). Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. Journal of Neuro-Oncology, 104(3), 659–667.

    CAS  PubMed  Google Scholar 

  72. Urbanelli, L., Magini, A., Buratta, S., Brozzi, A., Sagini, K., Polchi, A., Tancini, B., & Emiliani, C. (2013). Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel), 4(2), 152–170.

    Google Scholar 

  73. Bautista-López, N., Ndao, M., Camargo, F., Nara, T., Annoura, T., Hardie, D., Borchers, C., & Jardim, A. (2017). Characterization and diagnostic application of Trypanosoma cruzi Trypomastigote excreted-secreted antigens shed in extracellular vesicles released from infected mammalian cells. Journal of Clinical Microbiology, 55(3), 744–758.

    PubMed  PubMed Central  Google Scholar 

  74. Nedaeinia, R., Manian, M., Jazayeri, M., Ranjbar, M., Salehi, R., Sharifi, M., Mohaghegh, F., Goli, M., Jahednia, S., Avan, A., & Ghayour-Mobarhan, M. (2017). Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Therapy, 24(2), 48–56.

    CAS  PubMed  Google Scholar 

  75. Doeuvre, L., Plawinski, L., Toti, F., & Angles-Cano, E. (2009). Cell-derived microparticles: A new challenge in neuroscience. Journal of Neurochemistry, 110(2), 457–468.

    CAS  PubMed  Google Scholar 

  76. Marzesco, A., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., & Huttner, W. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of Cell Science, 118(Pt 13), 2849–2858.

    CAS  PubMed  Google Scholar 

  77. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J., & Lötvall, J. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    CAS  PubMed  Google Scholar 

  78. Eckard, S. C., Rice, G. I., Fabre, A., Badens, C., Gray, E. E., Hartley, J. L., Crow, Y. J., & Stetson, D. B. (2014). The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nature Immunology, 15(9), 839–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lubas, M., Christensen, M. S., Kristiansen, M. S., Domanski, M., Falkenby, L. G., Lykke-Andersen, S., Andersen, J. S., Dziembowski, A., & Jensen, T. H. (2011). Interaction profiling identifies the human nuclear exosome targeting complex. Molecular Cell, 43(4), 624–637.

    CAS  PubMed  Google Scholar 

  80. Lubas, M., Andersen, P. R., Schein, A., Dziembowski, A., Kudla, G., & Jensen, T. H. (2015). The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Reports, 10(2), 178–192.

    CAS  PubMed  Google Scholar 

  81. Tseng, C. K., Wang, H. F., Burns, A. M., Schroeder, M. R., Gaspari, M., & Baumann, P. (2015). Human telomerase RNA processing and quality control. Cell Reports, 13(10), 2232–2243.

    CAS  PubMed  Google Scholar 

  82. Giunta, M., Edvardson, S., Xu, Y., Schuelke, M., GomezDuran, A., Boczonadi, V., Elpeleg, O., Müller, J. S., & Horvath, R. (2016). Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Human Molecular Genetics, 25(14), 2985–2996.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, X., Ding, J., Li, Y., Liu, W., Ji, J., Wang, H., & Wang, X. (2018). Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Experimental Cell Research, 371, 269–277.

    CAS  PubMed  Google Scholar 

  84. Frühbeis, C., Fröhlich, D., Kuo, W. P., Amphornrat, J., Thilemann, S., Saab, A. S., Kirchhoff, F., Möbius, W., Goebbels, S., Nave, K. A., Schneider, A., Simons, M., Klugmann, M., Trotter, J., & Krämer-Albers, E. M. (2013). Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biology, 11(7), e1001604.

    PubMed  PubMed Central  Google Scholar 

  85. Ni, H., Yang, S., Siaw-Debrah, F., Hu, J., Wu, K., He, Z., Yang, J., Pan, S., Lin, X., Ye, H., Xu, Z., Wang, F., Jin, K., Zhuge, Q., & Huang, L. (2019). Exosomes derived from bone Mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Frontiers in Neuroscience, 13, 14 eCollection 2019.

    PubMed  PubMed Central  Google Scholar 

  86. Li, D., Huang, S., Zhu, J., Hu, T., Han, Z., Zhang, S., Zhao, J., Chen, F., & Lei, P. (2019). Exosomes from MiR-21-5p-increased neurons play a role in Neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury. Medical Science Monitor, 25, 1871–1885.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Y., Ye, Y., Kong, C., Su, X., Zhang, X., Bai, W., & He, X. (2019). MiR-124 enriched Exosomes promoted the M2 polarization of microglia and enhanced Hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochemical Research, 44(4), 811–828.

    CAS  PubMed  Google Scholar 

  88. Li, D., Huang, S., Yin, Z., Zhu, J., Ge, X., Han, Z., Tan, J., Zhang, S., Zhao, J., Chen, F., Wang, H., & Lei, P. (2019). Increases in miR-124-3p in microglial Exosomes confer Neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochemical Research, 44(8), 1903–1923.

    CAS  PubMed  Google Scholar 

  89. Patel, N. A., Moss, L. D., Lee, J. Y., Tajiri, N., Acosta, S., Hudson, C., Parag, S., Cooper, D. R., Borlongan, C. V., & Bickford, P. C. (2018). Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. Journal of Neuroinflammation, 15(1), 204.

    PubMed  PubMed Central  Google Scholar 

  90. Wang, B., & Han, S. (2018). Exosome-associated tau exacerbates brain functional impairments induced by traumatic brain injury in mice. Molecular and Cellular Neurosciences, 88, 158–166.

    CAS  PubMed  Google Scholar 

  91. Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., Chen, F., Wang, H., Zhang, J., & Lei, P. (2018). Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. The FASEB Journal, 32(1), 512–528.

    CAS  PubMed  Google Scholar 

  92. Li, Y., Yang, Y. Y., Ren, J. L., Xu, F., Chen, F. M., & Li, A. (2017). Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Research & Therapy, 8(1), 198.

    Google Scholar 

  93. Moyron, R. B., Gonda, A., Selleck, M. J., Luo-Owen, X., Catalano, R. D., O’Callahan, T., Garberoglio, C., Turay, D., & Wall, N. R. (2017). Differential protein expression in exosomal samples taken from trauma patients. Proteomics. Clinical Applications, 11(9–10).

  94. Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., & Xiong, Y. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. Journal of Neurosurgery, 122(4), 856–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Manek, R., Moghieb, A., Yang, Z., Kumar, D., Kobessiy, F., Sarkis, G. A., Raghavan, V., & Wang, K. K. W. (2018). Protein biomarkers and Neuroproteomics characterization of microvesicles/Exosomes from human cerebrospinal fluid following traumatic brain injury. Molecular Neurobiology, 55(7), 6112–6128.

    CAS  PubMed  Google Scholar 

  96. Agoston, D. V., Shutes-David, A., & Peskind, E. R. (2017). Biofluid biomarkers of traumatic brain injury. Brain Injury, 31(9), 1195–1203.

    PubMed  Google Scholar 

  97. Gill, J., Mustapic, M., Diaz-Arrastia, R., Lange, R., Gulyani, S., Diehl, T., Motamedi, V., Osier, N., Stern, R. A., & Kapogiannis, D. (2018). Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Injury, 32(10), 1277–1284.

    PubMed  PubMed Central  Google Scholar 

  98. Escrevente, C., Keller, S., Altevogt, P., & Costa, J. (2011). Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11, 108.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., & Nie, G. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390.

    CAS  PubMed  Google Scholar 

  100. Tatischeff, I., & Alfsen, A. (2011). A new biological strategy for drug delivery: Eucaryotic cell-derived Nanovesicles. Journal of Biomaterials and Nanobiotechnology, 2(5), 494–499.

    CAS  Google Scholar 

  101. Begum, G., Song, S., Wang, S., Zhao, H., Bhuiyan, M. I. H., Li, E., Nepomuceno, R., Ye, Q., Sun, M., Calderon, M. J., Stolz, D. B., St Croix, C., Watkins, S. C., Chen, Y., He, P., Shull, G. E., & Sun, D. (2018). Selective knockout of astrocytic Na(+) /H(+) exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia, 66(1), 126–144.

    PubMed  Google Scholar 

  102. Chen, F., Du, Y., Esposito, E., Liu, Y., Guo, S., Wang, X., Lo, E. H., Xing, C., & Ji, X. (2015). Effects of focal cerebral ischemia on Exosomal versus serum miR126. Translational Stroke Research, 6(6), 478–484.

    CAS  PubMed  Google Scholar 

  103. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–345.

    CAS  PubMed  Google Scholar 

  104. Wang, X., Botchway, B. O. A., Zhang, Y., Yuan, J., & Liu, X. (2019). Combinational treatment of bioscaffolds and extracellular vesicles in spinal cord injury. Frontiers in Molecular Neuroscience, 12, 81.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rajashekhar, G. (2014). Mesenchymal stem cells: new players in retinopathy therapy. Frontiers in Endocrinology (Lausanne), 5, 59.

    Google Scholar 

  106. Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2014). Regenerative therapies for central nervous system diseases: A biomaterials approach. Neuropsychopharmacology., 39(1), 169–188.

    CAS  PubMed  Google Scholar 

  107. Turtzo, L. C., Budde, M. D., Dean, D. D., Gold, E. M., Lewis, B. K., Janes, L., Lescher, J., Coppola, T., Yarnell, A., Grunberg, N. E., & Frank, J. A. (2015). Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One, 10(5), e0126551.

    PubMed  PubMed Central  Google Scholar 

  108. Harting, M. T., Jimenez, F., Xue, H., Fischer, U. M., Baumgartner, J., Dash, P. K., & Cox, C. S. (2009). Intravenous mesenchymal stem cell therapy for traumatic brain injury. Journal of Neurosurgery, 110(6), 1189–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ucar, B., & Humpel, C. (2018). Collagen for brain repair: Therapeutic perspectives. Neural Regeneration Research, 13(4), 595–598.

    PubMed  PubMed Central  Google Scholar 

  110. Allahverdiyev, A. M., Parlar, E., Dinparvar, S., Bagirova, M., & Abamor, E. Ş. (2018). Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S755–S762.

    CAS  PubMed  Google Scholar 

  111. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., & Zhang, H. G. (2010). A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18(9), 1606–1614.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vashisht, M., Rani, P., Sunita, Onteru, S., & Singh, D. (2018). Curcumin primed exosomes reverses LPS-induced pro-inflammatory gene expression in buffalo granulosa cells. Journal of Cellular Biochemistry, 119(2), 1488–1500.

    CAS  PubMed  Google Scholar 

  113. Tian, T., Zhang, H. X., He, C. P., Fan, S., Zhu, Y. L., Qi, C., Huang, N. P., Xiao, Z. D., Lu, Z. H., Tannous, B. A., & Gao, J. (2018). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials., 150, 137–149.

    CAS  PubMed  Google Scholar 

  114. Yang, T., Martin, P., Fogarty, B., Brown, A., Schurman, K., Phipps, R., Yin, V. P., Lockman, P., & Bai, S. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharmaceutical Research, 32(6), 2003–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Roohani-Esfahani, S. I., Newman, P., & Zreiqat, H. (2016). Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports, 6, 19468.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cho, H., Verbridge, S., Davalos, R., & Lee, Y. (2018). Development of an in vitro 3D brain tissue model mimicking in vivo-like pro-inflammatory and pro-oxidative responses. Annals of Biomedical Engineering, 46(6), 877–887.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (no. LY19H170001).

Author information

Authors and Affiliations

Authors

Contributions

XL designed the study. JY, BOAB, YZ, XW and XL prepared the first draft of the manuscript. JY, BOAB, YZ, XW and XL revised the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Xuehong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publish this article.

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Botchway, B.O.A., Zhang, Y. et al. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev and Rep 16, 323–334 (2020). https://doi.org/10.1007/s12015-019-09927-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09927-x

Keywords

Navigation