Skip to main content

Advertisement

Log in

Trends of Coastal Sea Level Between 1993 and 2015: Imprints of Atmospheric Forcing and Oceanic Chaos

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The observation and simulation of the variability of coastal sea level are impacted by various uncertainties, such as measurement errors and sampling biases, unresolved processes, and model and forcing biases. Ocean model simulations suggest that another uncertainty should be taken into account for the attribution of sea-level changes. Global ocean simulations indeed show that resolving mesoscale turbulence (even partly) promotes the emergence of low-frequency (LF) chaotic intrinsic variability (CIV) which causes substantial random fluctuations of sea level up to multiple decades in eddy-active regions of the world ocean. This random LFCIV is superimposed on the atmospherically forced (or simply “forced”) fluctuations, which are directly controlled by the atmospheric variability. We show from a large ensemble of global oceanic hindcasts that this multi-decadal LFCIV leaves a substantial imprint on the long-term trends (1993–2015) of coastal sea level: over 17–20% of the global ocean coastal area, in particular along the coastlines of the northwestern Pacific and Indian Oceans, and around the Gulf of Mexico, random sea-level trends may blur their atmospherically forced counterpart, such that simulated (and potentially observed) coastal sea-level trends cannot be unambiguously attributed to atmospheric or anthropic causes. The steric and manometric sea-level change contributions of these uncertainties are discussed, suggesting that they mostly come from the manometric sea-level trends near the coasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. That is, a simulation driven by an atmospheric reanalysis, i.e., including the full range of timescales.

  2. Certain 1°-resolution simulations produce LFCIV, albeit with much weaker intensity (e.g., O'Kane et al. 2013).

  3. Although other processes such as large-scale baroclinic instability may also produce LFCIV (Huck et al. 2015).

References

  • Ablain M, Legeais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, Benveniste J, Cazenave A (2017) Satellite altimetry-based sea level at global and regional scales. Surv Geophys 38:7–31. https://doi.org/10.1007/s10712-016-9389-8

    Article  Google Scholar 

  • Bessières L, Leroux S, Brankart J-M, Molines J-M, Moine M-P, Bouttier P-A, Penduff T, Terray L, Barnier B, Sérazin G (2017) Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution. Geosci Model Dev 10:1091–1106. https://doi.org/10.5194/gmd-10-1091-2017

    Article  Google Scholar 

  • Brankart J-M (2013) Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Model 66:64–76

    Article  Google Scholar 

  • Carson M, Lyu K, Richter K, Becker M, Domingues CM, Han W, Zanna L (2019) Climate model uncertainty and trend detection in regional sea level projections: a review. Surv Geophys. https://doi.org/10.1007/s10712-019-09559-3

    Article  Google Scholar 

  • Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. https://doi.org/10.1029/2011GL048794

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Dussin R, Barnier B (2013) The making of DFS5.1. Drakkar project report, Grenoble, France

  • Fasullo JT, Nerem RS (2018) Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc Nat Acad Sci 115(51):12944–12949. https://doi.org/10.1073/pnas.1813233115

    Article  Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J Geophys Res 99(C6):12767–12771

    Article  Google Scholar 

  • Grégorio S, Penduff T, Sérazin G, Molines J-M, Barnier B, Hirschi J (2015) Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales. J Phys Oceanogr 45(7):1929–1946. https://doi.org/10.1175/JPO-D-14-0163.1

    Article  Google Scholar 

  • Gregory JM, Griffies SM, Hughes CW et al (2019) Concepts and terminology for sea level: mean, variability and change, both local and global. Surv Geophys. https://doi.org/10.1007/s10712-019-09525-z

    Article  Google Scholar 

  • Griffies SM, Greatbatch RJ (2012) Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model 51:37–72. https://doi.org/10.1016/j.ocemod.2012.04.003

    Article  Google Scholar 

  • Griffies SM, Yin J, Durack PJ, Goddard P, Bates SC, Behrens E, Bentsen M, Bi D, Biastoch A, Böning C, Bozec A, Chassignet E, Danabasoglu G, Danilov S, Domingues CM, Drange H, Farneti R, Fernandez E, Greatebatch RJ, Holland DM, Ilicak M, Large WG, Lorbacher K, Lu J, Marsland SJ, Mishra A, Nurser AJG, Salas-Mélia D, Palter JB, Samuels BL, Schröter J, Schwarzkopf FU, Sidorenko D, Treguier A-M, Tseng YH, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q, Winton M, Zhang X (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89. https://doi.org/10.1016/j.ocemod.2014.03.004

    Article  Google Scholar 

  • Hallberg R (2013) Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model 72:92–103. https://doi.org/10.1016/j.ocemod.2013.08.007

    Article  Google Scholar 

  • Hamlington BD, Fasullo JT, Nerem RS, Kim KY, Landerer FW (2019) Uncovering the pattern of forced sea level rise in the satellite altimeter record. Geophys Res Lett 46(9):4844–4853. https://doi.org/10.1029/2018GL081386

    Article  Google Scholar 

  • Han W, Stammer D, Thompson P, Ezer T, Palanisamy H, Zhang X, Domingues CM, Zhang L, Yuan D (2019) Impacts of basin-scale climate modes on coastal sea level: a review. Surv Geophys. https://doi.org/10.1007/s10712-019-09562-8

    Article  Google Scholar 

  • Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann J-O (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30:1413. https://doi.org/10.1029/2002GL016776

    Article  Google Scholar 

  • Huck T, Arzel O, Sévellec F (2015) Multidecadal variability of the overturning circulation in presence of eddy turbulence. J Phys Oceanogr 45(1):157–173. https://doi.org/10.1175/jpo-d-14-0114.1

    Article  Google Scholar 

  • Jevrejeva S, Frederikse T, Kopp RE, Le Cozannet G, Jackson LP, van de Wal RSW (2019) Probabilistic sea level projections at the coast by 2100. Surv Geophys. https://doi.org/10.1007/s10712-019-09550-y

    Article  Google Scholar 

  • Landerer F, Jungclaus J, Marotzke J (2007a) Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate. Geophys Res Lett 34:L06307. https://doi.org/10.1029/2006GL029106

    Article  Google Scholar 

  • Landerer F, Jungclaus J, Marotzke J (2007b) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312

    Article  Google Scholar 

  • Legeais J-F, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes MJ, Andersen OB, Rudenko S, Cipollini P, Quartly GD, Passaro M, Cazenave A, Benveniste J (2018) An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst Sci Data 10:281–301. https://doi.org/10.5194/essd-10-281-2018

    Article  Google Scholar 

  • Leroux S, Penduff T, Bessières L, Molines J, Brankart J, Sérazin G, Barnier B, Terray L (2018) Intrinsic and atmospherically forced variability of the AMOC: insights from a large-ensemble ocean hindcast. J Clim 31:1183–1203. https://doi.org/10.1175/JCLI-D-17-0168.1

    Article  Google Scholar 

  • Llovel W, Lee T (2015) Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys Res Lett 42:1148–1157

    Article  Google Scholar 

  • Llovel W, Penduff T, Meyssignac B, Molines J-M, Terray L, Bessières L, Barnier B (2018) Contributions of atmospheric forcing and chaotic ocean variability to regional sea level trends over 1993–2015. Geophys Res Lett. https://doi.org/10.1029/2018GL080838

    Article  Google Scholar 

  • Marcos M, Wöppelmann G, Matthews A, Ponte RM, Birol F, Ardhuin F, Coco G, Santamaria-Gomez A, Ballu V, Testut L, Chambers D, Stop JE (2019) Coastal sea level and related fields from existing observing systems. Surv Geophys. https://doi.org/10.1007/s10712-019-09513-3

    Article  Google Scholar 

  • Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci USA 115(9):2022–2025. https://doi.org/10.1073/pnas.1717312115

    Article  Google Scholar 

  • O’Kane TJ, Matear RJ, Chamberlain MA, Risbey JS, Sloyan BM, Horenko I (2013) Decadal variability in an OGCM Southern Ocean: intrinsic modes, forced modes and metastable states. Ocean Model 69:1–21. https://doi.org/10.1016/j.ocemod.2013.04.009

    Article  Google Scholar 

  • Penduff T, Juza M, Barnier B, Zika J, Dewar WK, Treguier A-M, Molines J-M, Audiffren N (2011) Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J Clim 24:5652–5670. https://doi.org/10.1175/JCLI-D-11-00077.1

    Article  Google Scholar 

  • Penduff T, Barnier B, Terray L, Bessières L, Sérazin G, Grégorio S, Brankart J-M, Moine M-P, Molines J-M, Brasseur P (2014) Ensembles of eddying ocean simulations for climate. CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 65, vol 19, no 2, July 2014

  • Penduff T, Sérazin G, Leroux S, Close S, Molines JM, Barnier B, Bessières L, Terray L, Maze G (2018) Chaotic variability of ocean: heat content climate-relevant features and observational implications. Oceanography 31(2):63–71. https://doi.org/10.5670/oceanog.2018.210

    Article  Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A et al (2013) Observations: ocean. Chapter 3 in climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sérazin G, Penduff T, Grégorio S, Barnier B, Molines J-M, Terray L (2015) Intrinsic variability of sea-level from global 1/12° ocean simulations: spatio-temporal scales. J Clim 28:4279–4292. https://doi.org/10.1175/JCLI-D-14-00554

    Article  Google Scholar 

  • Sérazin G, Meyssignac B, Penduff T, Terray L, Barnier B, Molines J-M (2016) Quantifying uncertainties on regional sea-level rise induced by multi-decadal oceanic intrinsic variability. Geophys Res Lett. https://doi.org/10.1002/2016GL069273

    Article  Google Scholar 

  • Sérazin G, Jaymond A, Leroux S, Penduff T, Bessières L, Llovel W, Barnier B, Molines J-M, Terray L (2017) A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos. Geophys Res Lett 44:5580–5589. https://doi.org/10.1002/2017GL073026

    Article  Google Scholar 

  • Sérazin G, Penduff T, Barnier B, Molines J, Arbic BK, Müller M, Terray L (2018) Inverse cascades of kinetic energy as a source of intrinsic variability: a global OGCM study. J Phys Oceanogr 48:1385–1408. https://doi.org/10.1175/JPO-D-17-0136.1

    Article  Google Scholar 

  • WCRP Global Sea Level Budget Group (2018) Global sea-level budget 1993–present. Earth Syst Sci Data 10:1551–1590. https://doi.org/10.5194/essd-10-1551-2018

    Article  Google Scholar 

  • Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Monserrat S, Merrifeld MA (2019) Forcing factors affecting sea level changes at the coast. Surv Geophys. https://doi.org/10.1007/s10712-019-09531-1

    Article  Google Scholar 

  • Yin J, Schlesinger M, Stouffer R (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266

    Article  Google Scholar 

  • Yin J, Griffies SM, Stouffer R (2010) Spatial variability of sea-level rise in 21st century projections. J Clim 23:4585–4607

    Article  Google Scholar 

  • Zanna L, Brankart JM, Huber M, Leroux S, Penduff T, Williams PD (2018) Uncertainty and scale interactions in ocean ensembles: from seasonal forecasts to multi-decadal climate predictions. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3397

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the OCCIPUT and PIRATE projects. PIRATE (https://sealevel.jpl.nasa.gov/science/ostscienceteam/scientistlinks/scientificinvestigations2017/penduff/) is funded by CNES through the Ocean Surface Topography Science Team (OST-ST). OCCIPUT (https://meom-group.github.io/projects/occiput/) was funded by ANR through contract ANR-13-BS06-0007-01. This work was also supported by the French national program LEFE/INSU and has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No 633211. It is also part of the Copernicus Marine Environment Monitoring Service (CMEMS) GLO-HR project; CMEMS is implemented by Mercator Ocean International in the framework of a delegation agreement with the European Union. We acknowledge that the results of this research have been achieved using the PRACE Research Infrastructure resource CURIE based in France at TGCC. William Llovel was supported by C3S program, “Louis Gentil–Jacques Bourcart” fellowship from the French Académie des Sciences and by the OVALIE project from ESA Living Planet Fellowship fundings. The CCI product is freely available at http://www.esa-sealevel-cci.org/. The model dataset used for this study is freely available on http://zenodo.org (http://doi.org/10.5281/zenodo.1487983). We would like to thank two anonymous reviewers for their constructive comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Penduff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penduff, T., Llovel, W., Close, S. et al. Trends of Coastal Sea Level Between 1993 and 2015: Imprints of Atmospheric Forcing and Oceanic Chaos. Surv Geophys 40, 1543–1562 (2019). https://doi.org/10.1007/s10712-019-09571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09571-7

Keywords

Navigation