Skip to main content
Log in

Mineral Indicators of Reactions Involving Fluid Salt Components in the Deep Lithosphere

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The salt components of aqueous and aqueous-carbonic fluids are very important agents of metasomatism and partial melting of crustal and mantle rocks. The paper presents examples and synthesized data on mineral associations in granulite- and amphibolite-facies rocks of various composition in the middle and lower crust and in upper-mantle eclogites and peridotites that provide evidence of reactions involving salt components of fluids. These data are analyzed together with results of model experiments that reproduce some of these associations and make it possible to more accurately determine their crystallization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Antignano, A. and Manning, C.E., Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900°C and 0.7 to 2.0 GPa, Chem. Geol., 2008, vol. 251, pp. 112–119.

    Article  Google Scholar 

  2. Aranovich, L.Ya., The role of brines in high-temperature metamorphism and granitization, Petrology, 2017, vol. 25, no. 5, pp. 486–497.

    Article  Google Scholar 

  3. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  4. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  5. Aranovich, L.Y. and Newton, R.C., Reversed determination of the reaction: phlogopite + quartz = enstatite + potassium feldspar + H2O in the ranges 750–875oC and 2–12 kbar at low H2O activity with concentrated KCl solutions, Am. Mineral., 1998, vol. 83, pp. 193–204.

    Article  Google Scholar 

  6. Aranovich, L.Y. and Safonov, O.G., Halogens in high-grade metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y., Eds., Cham: Springer, 2018.

    Google Scholar 

  7. Aranovich, L.Y., Shmulovich, K.I., and Fed’kin, V.V., The H2O and CO2 regime in regional metamorphism, Int. Geol. Rev., 1987, vol. 29, pp. 1379–1401.

    Article  Google Scholar 

  8. Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G., and Gerya, T.V., Ternary system H2O–CO2–NaCl at high TP parameters: an empirical mixing model, Geochem. Int., 2010, vol. 48, no. 5, pp. 446–455.

    Article  Google Scholar 

  9. Aranovich, L.Y., Newton, R.C., and Manning, C.E., Brine-assisted anatexis: experimental melting in the system haplogranite–H2O-NaCl–KCl at deep-crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120.

    Article  Google Scholar 

  10. Aranovich, L.Y., Makhluf, A.R., Manning, C.E., and Newton, R.C., Dehydration melting and the relationship between granites and granulites, Precambrian Res., 2014, vol. 253, pp. 26–37.

    Article  Google Scholar 

  11. Barnes, J.D., Manning, C.E., Scambelluri, M., and Selverstone, J., The behavior of halogens during subduction-zone processes, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y., Eds., Cham: Springer, 2018, pp. 545–590.

    Google Scholar 

  12. Bea, F., Arzamastsev, A., Montero, P., and Arzamastseva, L., Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 554–566.

    Article  Google Scholar 

  13. Bernini, D., Wiedenbeck, M., Dolejš, D., and Keppler, H., Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 117–128.

    Article  Google Scholar 

  14. Bulanova, G.P., Barashkov, Yu.P., Tal’nikova, S.B., and Smelova, G.B., Prirodnyi almaz - geneticheskie aspekty (Natural Diamond—a Genetic Aspect), Novosibirsk: Nauka, 1993.

  15. Butvina, V.G., Safonov, O.G., and Litvin, Yu.A., Experimental study of eclogite melting with participation of the H2O–CO2–KCl fluid at 5 GPa, Dokl. Eath Sci., vol. 427A, no. 6, pp. 956–960.

  16. Campanaro, B.P. and Jenkins, D.M., An experimental study of chlorine incorporation in amphibole synthesized along the pargasite–ferro-pargasite join, Can. Mineral., 2017, vol. 55, pp. 419–436.

    Article  Google Scholar 

  17. Chan, A., Jenkins, D.M., and Dyar, M.D., Partitioning of chlorine between NaCl brines and ferro-pargasite: implications for the formation of chlorine-rich amphiboles in mafic rocks, Can. Mineral., 2016, vol. 54, pp. 337–351.

    Article  Google Scholar 

  18. Chevychelov, V.Yu., Distribution of volatiles (Cl, F, CO2) in water-saturated fluid–magmatic systems of different composition, Petrologiya, 2019 (in press).

  19. Chu, L., Enggist, A., and Luth, R.W., Effect of KCl on melting in the Mg2SiO4–MgSiO3–H2O system at 5 GPa, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 565–571.

    Article  Google Scholar 

  20. Condie, K.C., Allen, P., and Narayana, B.L., Geochemistry of the Archean low- to high-grade transition zone, Southern India, Contrib. Mineral. Petrol., 1982, vol. 81, pp. 157–167.

    Article  Google Scholar 

  21. Currin, A., Koepke, J., Almeev, R.R., and Beermann, O., Interaction of highly saline fluid and olivine gabbro: experimental simulation of deep hydrothermal processes involving amphibole at the base of the oceanic crust, Lithos, 2018, vol. 323, p. 91102.

    Google Scholar 

  22. Dasgupta, S., Sengupta, P., Sengupta, Pr., et al., Petrology of gedrite-bearing rocks in mid-crustal ductile shear zones from the Eastern Ghats Belt, India, J. Metamorph. Geol., 1999, vol. 17, pp. 765–778.

    Article  Google Scholar 

  23. Dolejš, D. and Zajacz, Z., Halogens in silicic magmas and their hydrothermal systems, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y., Eds., Cham: Springer, 2018, pp. 431–543.

    Google Scholar 

  24. Ebadi, A. and Johannes, W., Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2, Contrib. Mineral. Petrol., 1991, vol. 106, pp. 286–295.

    Article  Google Scholar 

  25. Edgar, A.D. and Arima, M., Experimental studies on K-metasomatism of a model pyrolite mantle and their bearing on the genesis of uitrapotassic magmas, Proc. 27th Int. Geol. Congr. Petrol (Igneous and Metamorphic Rocks), 1984, vol. 9, pp. 509–541.

  26. Fabbrizio, A., Stalder, R., Hametner, K., and Günther, D., Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions, Geochim. Cosmochim. Acta, 2013, vol. 121, pp. 684–700.

    Article  Google Scholar 

  27. Fabbrizio, A., Stalder, R., Hametner, K., et al., Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1300oC, Contrib. Mineral. Petrol., 2013b, vol. 166, pp. 639–653.

    Article  Google Scholar 

  28. Franz, L. and Harlov, D.E., High-grade K-feldspar veining in granulites from the Ivrea–Verbano zone, northern Italy: fluid flow in the lower crust and implications for granulite facies genesis, J. Geol., 1998, vol. 106, pp. 455–472.

    Article  Google Scholar 

  29. Frezzotti, M.L. and Touret, J.L., CO2, carbonate-rich melts, and brines in the mantle, Geosci. Front., 2014, vol. 5, pp. 697–710.

    Article  Google Scholar 

  30. Frezzotti, M.L. and Ferrando, S., The role of halogens in the lithospheric mantle, Harlov D.E. and Aranovich. L.Y., Eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Cham: Springer, 2018, pp. 805–845.

  31. Gilbert, F., Guillaume, D., and Laporte, D., Importance of fluid immiscibility in the H2O–NaCl–CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures, Eur. J. Mineral., 1998, vol. 10, pp. 1109–1123.

    Article  Google Scholar 

  32. Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., et al., Alkali–carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites, Chem. Geol., 2018, vol. 483, pp. 261–274.

    Article  Google Scholar 

  33. Grant, T.B. and Harlov, D.E., The influence of NaCl–H2O fluids on reactions between olivine and plagioclase: an experimental study at 0.8 GPa and 800–900°C, Lithos, 2018, vol. 323, pp. 78–90.

    Article  Google Scholar 

  34. Grew, E.S., Herd, R.K., and Marquez, N., Boron-bearing kornerupine from fiskenaesset, west greenland: a reexamination of specimens from the type locality, Mineral. Mag., 1987, vol. 51, p. 695.

    Article  Google Scholar 

  35. Griffin, W.L., Shee, S.R., Ryan, C.G., et al., Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton Kimberlite, Kimberley, South Africa, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 232–250.

    Article  Google Scholar 

  36. Hammerli, J. and Rubenach, M., The role of halogens during regional and contact metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y., Eds., Cham: Springer Geochemistry, 2018, pp. 649–712.

    Google Scholar 

  37. Hammouda, T. and Keshav, S., Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites, Chem. Geol., 2015, vol. 418, pp. 171–188.

    Article  Google Scholar 

  38. Hansen, E.C., Newton, R.C., Janardhan, A.S., and Lindberg, S., Differentiation of Late Archean crust in the eastern Dharwar Craton, South India, J. Geol., 1995, vol. 103, pp. 629–651.

    Article  Google Scholar 

  39. Hansen, E.C., Ahmed, K., and Harlov, D.E., Rb depletion in biotites and whole rocks across an amphibolite to granulite facies transition zone, Tamil Nadu, South India, Lithos, 2002, vol. 64, pp. 29–47.

    Article  Google Scholar 

  40. Hansen, E.C. and Harlov, D.E., Whole-rock, phosphate, and silicate compositional trends across an amphibolite-to granulite-facies transition, Tamil Nadu, India, J. Petrol., 2007, vol. 48, pp. 1641–1680.

    Article  Google Scholar 

  41. Harlov, D.E., Petrological and experimental application of REE- and actinide-bearing accessory minerals to the study of Precambrian high-grade gneiss terranes, Origin and Evolution of Precambrian High-Grade Terrains, with Special Emphasis on the Limpopo Complex in Southern Africa, Van Reenen, D.D., Kramers, J.D. McCourt, S., and Perchuk, L.L., Eds., Geol. Soc. Am. Sp. Paper, 2011, vol. 207, pp. 13–24.

  42. Harlov, D.E., The potential role of fluids during regional granulite-facies dehydration in the lower crust, Geosci. Front., 2012, vol. 3, pp. 813–827.

    Article  Google Scholar 

  43. Harlov, D.E., Apatite: a fingerprint for metasomatic processes, Elements, 2015, vol. 11, pp. 171–176.

    Article  Google Scholar 

  44. Harlov, D.E. and Förster, H.-J., High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part I: Petrography and silicate mineral chemistry, J. Petrol., 2002, vol. 43, pp. 769–799.

    Article  Google Scholar 

  45. Harlov, D.E. and Melzer, S., Experimental partitioning of Rb and K between phlogopite and concentrated (K, Rb)Cl brine: implication for the role of concentrated KCl brines in the depletion of Rb in phlogopite and the stability of phlogopite during charnockite genesis, Lithos, 2002, vol. 64, pp. 15–28.

    Article  Google Scholar 

  46. Harlov, D.E. and Hansen, E.C., Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, South India, J. Metamorph. Geol., 2005, vol. 23, pp. 241–59.

    Article  Google Scholar 

  47. Harlov, D.E., Hansen, E.C., and Bigler, C., Petrologic evidence for K-feldspar metasomatism in granulite facies rocks, Chem. Geol., 1998, vol. 151, pp. 373–386.

    Article  Google Scholar 

  48. Harlov, D.E., Wirth, R., and Förster, H.-J., An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite, Contrib. Mineral. Petrol., 2005, vol. 150, pp. 268–286.

    Article  Google Scholar 

  49. Harlov, D.E., Johansson, L., Kerkhof, A., et al., The role of advective fluid flow and diffusion during localized, solid-state dehydration: Sondrum Stenhuggeriet, Halmstad, SW Sweden, J. Petrol., 2006a, vol. 47, no. 1, pp. 3–33.

    Article  Google Scholar 

  50. Harlov, D.E., Tropper, P., Seifert, W., et al., Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2, Lithos, 2006b, vol. 88, pp. 72–84.

    Article  Google Scholar 

  51. Harlov, D.E., van den Kerkhof, A., and Johansson, L., Localized, solid-state dehydration associated with the Varberg charnockite intrusion, SW Sweden, Precambrian Res., 2014, vol. 253, pp. 50–62.

    Article  Google Scholar 

  52. Heinrich, W., Fluid immiscibility in metamorphic rocks, Rev. Mineral. Geochem., 2007, vol. 65, pp. 389–430.

    Article  Google Scholar 

  53. Hoffer, E., The reaction sillimanite + biotite + quartz = cordierite + K-feldspar + H2O and partial melting in the system K2O–FeO–MgO–Al2O3–SiO2, Contrib. Mineral. Petrol., 1976, vol. 55, pp. 127–130.

    Article  Google Scholar 

  54. Iiyama, J.T., Influence des anions sur les équilibres d’échange d’ions Na-K dans les feldspaths alcalins a 600°C sous une pression de 1000 bars, Bull. Soc. Franç. Mineral. Crist., 1965, vol. 88, pp. 618–622.

    Google Scholar 

  55. Ionov, D.A., O’Reilly, S.Y., and Ashchepkov, I.V., Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia, Contrib. Mineral. Petrol., 1995, vol. 122, pp. 174–190.

    Article  Google Scholar 

  56. Ivanov, M.V., Bushmin, S.A., and Aranovich, L.Ya., Equations of state for NaCl and CaCl2 solutions of arbitrary concentration at temperatures 423.15–623.15 K and pressures up to 5 kbar, Dokl. Earth Sci., 2018, vol. 481, no. 2, pp. 1086–1090.

    Article  Google Scholar 

  57. Izraeli, E.S., Harris, J.W., and Navon, O., Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, south africa, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 2561–2575.

    Article  Google Scholar 

  58. Johnson, E.L., Experimentally determined limits for H2O–CO2–NaCl immiscibility in granulites, Geology, 1991, vol. 19, pp. 925–928.

    Article  Google Scholar 

  59. Kamenetsky, V.S., Maas, R., Kamenetsky, M.B., et al., Chlorine from the mantle: magmatic halides in the Udachnaya-East Kimberlite, Siberia, Earth Planet. Sci. Lett., 2009, vol. 285, pp. 96–104.

    Article  Google Scholar 

  60. Khodorevskaya L.I., Aranovich L.Ya. Experimental study of amphibole interaction with H2O–NaCl fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer, Petrology, 2016, vol. 24, no. 3, pp. 215–233.

    Article  Google Scholar 

  61. Klein-BenDavid, O., Wirth, R., and Navon, O., Tem imaging and analysis of microinclusions in diamonds: a close look at diamond-bearing fluids, Am. Mineral., 2006, vol. 91, pp. 353–356.

    Article  Google Scholar 

  62. Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay Area, Lapland granulite belt, southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320-349.

    Article  Google Scholar 

  63. Korzhinskii, D.S., Principles of alkali mobility during magmatic phenomena, K 70-letiyu akademika D.S. Belyankina (On 70th Anniversary of Academician D.S. Belyankin), Moscow: AN SSSR, 1946, pp. 242–261.

    Google Scholar 

  64. Korzhinskii, D.S., Role of alkalinity in the formation of charnockite gneisses, Tr. Vostochno-Sibirskogo Inst. AN SSR, Ser. Geol., 1961, vol. 5, pp. 50–61.

    Google Scholar 

  65. Korzhinskii, M.A., Apatite solid solution as indicator of HCl and HF fugacity in hydrothermal fluid, Geokhimiya, 1981, no. 5, pp. 689–706.

  66. Kotel’nikov, A.R., Bychkov, A.M., and Chernavina, N.I., Experimental study of calcum partitioning between plagioclase and aqueous–salt fluid at 700°C and P = 1000 kG/cm2, Geokhimiya, 1981, no. 5, pp. 707–721.

  67. Kullerud, K., Occurrence and origin of Cl-rich amphibole and biotite in the Earth’s crust - implications for fluid composition and evolution, Hydrogeology of Crystalline Rocks, Dordrecht: Springer, 2000, pp. 205–225.

    Google Scholar 

  68. Kushiro, I. and Aoki, K., Origin of some eclogite inclusions in kimberlite, Am. Mineral., 1968, vol. 53, pp. 1347–1367.

    Google Scholar 

  69. Lagache, M. and Weisbrod, A., The system: two alkali feldspars–KCl–NaCl–H2O at moderate to high temperatures and low pressures, Contrib. Mineral. Petrol., 1977, vol. 62, pp. 77–101.

    Article  Google Scholar 

  70. Larikova, T.L. and Zaraisky, G.P., Experimental modeling of corona textures, J. Metamorph. Geol., 2009, vol. 27, pp. 139–151.

    Article  Google Scholar 

  71. Lecumberri-Sanchez, P. and Bodnar, R.J., Halogen geochemistry of ore deposits: contributions towards understanding sources and processes, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y., Eds., Cham: Springer, 2018, pp. 261–305.

    Google Scholar 

  72. Mair, P., Tropper, P., Harlov, D.E., and Manning, C.E., The solubility of apatite in H2O, KCl–H2O–NaCl–H2O at 800°C and 1.0 GPa: implications for REE mobility in high-grade saline brines, Chem. Geol., 2017a, vol. 470, pp. 180–192.

    Article  Google Scholar 

  73. Mair, P., Tropper, P., Harlov, D.E., and Manning, C.E., The solubility of CePO4 monazite and YPO4 xenotime in KCl–H2O fluids at 800oC and 1.0 GPa: implications for REE transport in high-grade crustal fluids, Am. Mineral., 2017b, vol. 102, pp. 2457–2466.

    Article  Google Scholar 

  74. Makhluf, A.R., Newton, R.C., and Manning, C.E., Hydrous albite magmas at lower crustal pressure: new results on liquidus H2O content, solubility, and H2O activity in the system NaAlSi3O8–H2O–NaCl at 1.0 GPa, Contrib. Mineral. Petrol., 2016, vol. 171, p. 75.

    Article  Google Scholar 

  75. Makhluf, A.R., Newton, R.C., and Manning, C.E., H2O activity in albite melts at deep crustal P-T conditions derived from melting experiments in the systems NaAlSi3O8–H2O–CO2 and NaAlSi3O8–H2O–NaCl, Petrology, 2017, vol. 25, pp. 449–457.

    Article  Google Scholar 

  76. Manning, C.E., Thermodynamic modeling of fluid-rock interaction at mid-crustal and upper-mantle conditions, Rev. Mineral. Geochem., 2013, vol. 76, pp. 135–164.

    Article  Google Scholar 

  77. Manning, C.E. and Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrological and geochemical effects, Precambrian Res., 2014, vol. 253, pp. 6–16.

    Article  Google Scholar 

  78. Mantegazzi, D., Sanchez-Valle, C., and Driesner, T., Thermodynamic properties of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for dehydration reactions in subducting slabs, Geochim. Cosmochim. Acta, 2013, vol. 121, pp. 263–290.

    Article  Google Scholar 

  79. Markl, G. and Bucher, K., Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 1998, vol. 391, pp. 781–783.

    Article  Google Scholar 

  80. Markl, G., Masaaki, M., and Bucher, K., Chlorine stable isotope composition of granulites from Lofoten, Norway: implications for the cl isotopic composition and for the source of Cl enrichment in the lower crust, Earth Planet. Sci. Lett., 1997, vol. 150, pp. 95–102.

    Article  Google Scholar 

  81. Markl, G., Ferry, J., and Bucher, K., Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten islands, Norway, Am. J. Sci., 1998, vol. 298, pp. 705–757.

    Article  Google Scholar 

  82. McNeil, A.M. and Edgar, A.D., Sodium-rich metasomatism in the upper mantle: implications of experiments on the pyrolite–Na2O-rich fluid system at 950oC, 20 kbar, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2285–2294.

    Article  Google Scholar 

  83. Misra, K.C., Anand, M., Taylor, L.A., and Sobolev, N.V., Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 696–714.

    Article  Google Scholar 

  84. Montanini, A. and Harlov, D.E., Petrology and mineralogy of granulite-facies mafic xenoliths (Sardinia, Italy): evidence for KCl metasomatism in the lower crust, Lithos, 2006, vol. 92, pp. 588–608.

    Article  Google Scholar 

  85. Morrison, J., Compositional constraints on the incorporation of Cl into amphiboles, Am. Mineral., 1991, vol. 76, pp. 1920–1930.

    Google Scholar 

  86. Mueller, B.L., Jenkins, D.M., and Dyar, M.D., Chlorine incorporation in amphiboles synthesized along the magnesio-hastingsite–hastingsite compositional join, Eur. J. Mineral., 2017, vol. 29, pp. 167–180.

    Article  Google Scholar 

  87. Mysen, B.O. and Boettcher, A.L., Melting of a hydrous mantle: I. phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen, J. Petrol., 1975, vol. 16, pp. 520–548.

    Article  Google Scholar 

  88. Nazzareni, S., Comodi, P., Bindi, L., Safonov, O.G., et al., Synthetic hypersilicic Cl-bearing mica in the phlogopite–celadonite join: a multimethodical characterization of the missing link between di- and tri-octahedral micas at high pressures, Am. Mineral., 2008, vol. 93, pp. 1429–1436.

    Article  Google Scholar 

  89. Newton, R.C., Simple-system mineral reactions and high-grade metamorphic fluids, Eur. J. Mineral., 1995, vol. 7, pp. 861–881.

    Article  Google Scholar 

  90. Newton, R.C. and Manning, C.E., Experimental determination of calcite solubility in H2O–NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones, Am. Mineral., 2002, vol. 87, pp. 1401–1409.

    Article  Google Scholar 

  91. Newton, R.C. and Manning, C.E., Solubility of anhydrite, CaSO4, in NaCl–H2O solutions at high pressures and temperatures: applications to fluid-rock interaction, J. Petrol., 2004, vol. 46, pp. 701–716.

    Article  Google Scholar 

  92. Newton, R.C. and Manning, C.E., Solubilities of corundum, wollastonite and quartz in H2O–NaCl solutions at 800°C and 10 kbar: interaction of simple minerals with brines at high pressure, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5571–5582.

    Article  Google Scholar 

  93. Newton, R.C. and Manning, C.E., Solubility of grossular, Ca3Al2Si3O12, in H2O–NaCl solutions at 800°C and 10 kbar, and the stability of garnet in the system CaSiO3–Al2O3–H2O–NaCl, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 5191–5202.

    Article  Google Scholar 

  94. Newton, R.C. and Manning, C.E., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  95. Newton, R.C., Smith, J.V., and Windley, B.F., Carbonic metamorphism, granulites and crustal growth, Nature, 1980, vol. 288, pp. 45–50.

    Article  Google Scholar 

  96. Newton, R.C., Aranovich, L.Y., Hansen, E.C., and Vandenheuvel, B.A., Hypersaline fluids in Precambrian deep-crustal metamorphism, Precambrian Res., 1995, vol. 91, pp. 41–63.

    Article  Google Scholar 

  97. Newton, R.C., Touret, J.L.R., and Aranovich, L.Y., Fluids and H2O activity at the onset of granulite facies metamorphism, Precambrian Res., 2014, vol. 253, pp. 17–25.

    Article  Google Scholar 

  98. Niida, K. and Green, D.H., Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 1999, vol. 135, pp. 18–40.

    Article  Google Scholar 

  99. Nijland, T.G., Touret, J.L., and Visser, D., Anomalously low temperature orthopyroxene, spinel, and sapphirine occurrences in metasediments from the Bamble amphibolite-to-granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids, J. Geol., 1998, vol. 106, pp. 575–590.

    Article  Google Scholar 

  100. O’Reilly, S.Y. and Griffin, W.L., Mantle metasomatism, Metasomatism and the Chemical Transformation of Rock, Harlov, D.E. and Austerheim, H., Eds., Berlin Heidelberg: Springer, 2013.

    Google Scholar 

  101. Orville, P.M., Alkali ion exchange between vapor and feldspar phases, Am. J. Sci., 1963, vol. 261, pp. 201–237.

    Article  Google Scholar 

  102. Perchuk, L.L., Alkali mobility during metamorphism and geobarometry, Dokl. Akad. Nauk, 1993, vol 331, no. 2, pp. 230–234.

    Google Scholar 

  103. Perchuk, L.L. and Gerya, T.V., Fluid control of charnockitization, Chem. Geol., 1993, vol. 175–186.

    Book  Google Scholar 

  104. Perchuk, L.L., Gerya, T.V., and Korsman, K., Model of charnockitization of gneiss complexes, Petrologiya, 1994, vol. 2, no. 5, pp. 451–480.

    Google Scholar 

  105. Perchuk, L.L., Safonov, O.G., Gerya, T.V., et al., Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri-Lanka, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 212–232.

    Article  Google Scholar 

  106. Philippot, P. and Selverstone, J., Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction, Contrib. Mineral. Petrol., 1991, vol. 106, pp. 417–430.

    Article  Google Scholar 

  107. Pirard, C. and Hermann, J., Experimentally determined stability of alkali amphibole in metasomatised dunite at sub-arc pressures, Contrib. Mineral. Petrol., 2015, vol. 169, pp. 1–26.

    Article  Google Scholar 

  108. Putnis A. and Austrheim H. Mechanism of metasomatism and metamorphism on the local mineral scale: the role of dissolution-precipitation during mineral re-equilibration, D.E. Harlov and H. Austrheim Eds., Metasomatism and the Chemical Transformation of Rock. The Role of Fluids in Terrestrial and Extraterrestrial Processes. Berlin Heidelberg: Springer, 2013. P. 141–170.

  109. Rajesh, H.M., Belyanin, G.A., Safonov, O.G., et al., Fluid-induced dehydration of the Paleoarchean Sand River biotite–hornblende gneiss, central zone, Limpopo Complex, South Africa, J. Petrol., 2013, vol. 54, pp. 41–74.

    Article  Google Scholar 

  110. Ravindra-Kumar, G.R., Mechanism of arrested charnockite formation at Nemmara, Palghat region, Southern India, Lithos, 2004, vol. 75, pp. 331–358.

    Article  Google Scholar 

  111. Roberge, M., Bureau, H., Bolfan-Casanova, N., et al., Is the transition zone a deep reservoir for fluorine?, Earth Planet. Sci. Lett., 2015, vol. 429, pp. 25–32.

    Article  Google Scholar 

  112. Roberge, M., Bureau, H., Bolfan-Casanova, N., et al., Chlorine in wadsleyite and ringwoodite: an experimental study, Earth Planet. Sci. Lett., 2017, vol. 467, pp. 99–107.

    Article  Google Scholar 

  113. Rubie, D.C. and Gunter, W.D., The role of speciation in alkaline igneous fluids during fenite metasomatism, Contrib. Mineral. Petrol., 1983, vol. 82, pp. 165–175.

    Article  Google Scholar 

  114. Safonov, O.G., The role of alkalis in the formation of coronitic textures in metamangerites and metaanorthosites from the Adirondack Complex, United States, Petrology, 1998, vol. 6, no. 6, pp. 583–602.

    Google Scholar 

  115. Safonov, O.G., Kamafugite melts as products of interaction between peridotite and chloride–carbonate liquids at pressures 1–7 GPa, Dokl. Earth Sci., 2011, vol. 440, no. 1, pp. 1276–1281.

    Article  Google Scholar 

  116. Safonov, O.G. and Aranovich, L.Y., Alkali control of high-grade metamorphism and granitization, Geosci. Front., 2014, vol. 5, pp. 711–727.

    Article  Google Scholar 

  117. Safonov, O.G. and Butvina, V.G., Interaction of model peridotite with H2O–KCl fluid: experiment at 1.9 GPa and its implications for upper mantle metasomatism, Petrology, 2013, vol. 21, no. 6, pp. 599–615.

    Article  Google Scholar 

  118. Safonov, O.G. and Butvina, V.G., Indicator reactions of K and Na activities in the upper mantle: natural mineral assemblages, experimental data, and thermodynamic modeling, Geochem. Int., 2016, vol. 54, no. 10, pp. 858–872.

    Article  Google Scholar 

  119. Safonov, O.G. and Kosova, S.A., Fluid–mineral reactions and melting of orthopyroxene–cordierite–biotite gneiss in the presence of H2O–CO2–NaCl and H2O–CO2–KCl fluids under parameters of granulite-facies metamorphism, Petrology, 2017, vol. 25, no. 5, pp. 458–485.

    Article  Google Scholar 

  120. Safonov, O.G., Perchuk, L.L., and Litvin, Yu.A. Interaction of diopside and jadeite with potassium chloride at 5 GPa, Dokl. Earth Sci., 2007, vol. 415, no. 789–793.

  121. Safonov, O.G., Kovaleva, E.I., Kosova, S.A., et al., Experimental and petrological constraints on local-scale interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl fluids at middle-crustal conditions: example from the Limpopo Complex, South Africa, Geosci. Front., 2012, vol. 3, pp. 829–841.

    Article  Google Scholar 

  122. Safonov, O.G., Kosova, S.A., and van Reenen, D.D., Interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl fluids at 550 MPa and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust, J. Petrol., 2014, vol. 55, pp. 2419–2456.

    Article  Google Scholar 

  123. Safonov, O.G., Reutsky, V.N., Varlamov, D.A., et al., Composition and source of fluids in high-temperature graphite-bearing granitoids associated with granulites: examples from the southern marginal zone, Limpopo Complex, South Africa, Gondwana Res., 2018, vol. 60, pp. 129–152.

    Article  Google Scholar 

  124. Santosh, M. and Omori, S., CO2 flushing: a plate tectonic perspective, Gondwana Res., 2008, vol. 13, pp. 86–102.

    Article  Google Scholar 

  125. Scambelluri, M., Piccardo, G.B., Philippot, P., et al., High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 485–499.

    Article  Google Scholar 

  126. Schulze, D.J., Low-Ca garnet harzburgites from Kimberley, South Africa: abundance and bearing on the structure and evolution of the lithosphere, J. Geophys. Res.: Solid Earth, 1995, vol. 100, pp. 12513–12526.

    Article  Google Scholar 

  127. Seifert, F., Stability of the assemblage cordierite + K-feldspar + quartz, Contrib. Mineral. Petrol., 1976, vol. 57, pp. 179–185.

    Article  Google Scholar 

  128. Shatsky, V.S., Ragozin, A.L., Zedgenizov, D.A., and Mityukhin, S., Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe, Lithos, 2008, vol. 105, pp. 289–300.

    Article  Google Scholar 

  129. Shmulovich, K.I. and Graham, C.M., Melting of albite and dehydration of brucite in H2O–NaCl fluids to 9 kbars and 700–900°C: implications for partial melting and water activities during high pressure metamorphism, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 370–382.

    Article  Google Scholar 

  130. Shmulovich, K.I. and Graham, C.M., An experimental study of phase equilibria in the systems H2O–CO2–CaCl2 and H2O–CO2–NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 450–462.

    Article  Google Scholar 

  131. Shmulovich, K.I. and Grem, K. Plagioclase–aqueous solution equilibrium: concentration dependence, Petrology, 2008, vol. 16, no. 2, pp. 177–192.

    Article  Google Scholar 

  132. Shmulovich, K.I., Graham, C.M., and Yardley, B.W.D., Quartz, albite and diopside solubilities in H2O–NaCl fluids at 0.5–0.9 GPa, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 95–108.

    Article  Google Scholar 

  133. Spear, F.S. and Pyle, J.M., Apatite, monazite, and xenotime in metamorphic rocks, Rev. Mineral. Geochem., 2002, vol. 48, pp. 293–335.

    Article  Google Scholar 

  134. Stalder, R., Kronz, A., and Simon, K., Hydrogen incorporation in enstatite in the system MgO–SiO2–H2O–NaCl, Contrib. Mineral. Petrol., 2008, vol. 156, pp. 653–659.

    Article  Google Scholar 

  135. Tanis, E.A., Simon, A., Zhang, Y., et al., Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79 GPa and 250–650°C, Geochim. Cosmochim. Acta, 2016, vol. 177, pp. 170–181.

    Article  Google Scholar 

  136. The Role of Fluids in Terrestrial and Extraterrestrial Processes, Berlin Heidelberg: Springer, 2013.

  137. Thibault, Y. and Edgar, A.D., Patent mantle-metasomatism: inferences based on experimental studies, Proc. Ind. Acad. Sci. Earth Planet. Sci, 1990, vol. 99, pp. 21–37.

    Google Scholar 

  138. Touret, J.L.R., Fluid regime in southern Norway: the record of inclusions, Deep Proterozoic Crust, Proc. NATO Adv. Study Inst., 1985, pp. 517–549.

  139. Touret, J.L.R., Mantle to lower-crust fluid/melt transfer through granulite metamorphism, Rus. Geol. Geophys, 2009, vol. 50, pp. 1052–1062.

    Article  Google Scholar 

  140. Touret, J.L.R. and Huizenga, J.M., Precambrian intraplate magmatism: high temperature, low pressure crustal granulites, J. Afr. Earth Sci, 1999, vol. 28, pp. 367–382.

    Article  Google Scholar 

  141. Touret, J.L.R. and Huizenga, J.M., Fluids in granulites, Origin and Evolution of Precambrian High-Grade Terrans, with Special Emphasis on the Limpopo Complex in Southern Africa, Van Reenen, D.D., Kramers, J.D., McCourt, S., and Perchuk, L.L., Eds., Geol. Soc. Amer. Mem., 2011, vol. 207, pp. 25–37.

    Google Scholar 

  142. Touret, J.L.R. and Huizenga, J.M., Fluid-assisted granulite metamorphism: a continental journey, Gondwana Res, 2012, vol. 21, pp. 224–235.

    Article  Google Scholar 

  143. Touret, J.L.R. and Nijland, T.G., Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones, Metasomatism and the Chemical Transformation of Rock, Berlin-Heidelberg: Springer, 2013, pp. 415–469.

    Google Scholar 

  144. Trommsdorff, V. and Skippen, G., Vapor loss “(“boiling”)” as a mechanism for fluid evolution in metamorphic rocks, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 317–322.

    Article  Google Scholar 

  145. Trommsdorff, V., Skippen, G., and Ulmer, P., Halite and sylvite solid inclusions in high-grade rocks, Contrib. Mineral. Petrol., 1985, vol. 89, pp. 24–29.

    Article  Google Scholar 

  146. Tropper, P. and Manning, C.E., Paragonite stability at 700°C in the presence of H2O–NaCl fluids: constraints on H2O activity and implications for high pressure metamorphism, Contrib. Mineral. Petrol., 2004, vol. 147, pp. 740–749.

  147. Tropper, P. and Manning, C.E., The solubility of fluorite in H2O and H2O–NaCl at high pressure and temperature, Chem. Geol., 2007, vol. 242, pp. 299–306.

    Article  Google Scholar 

  148. Tropper, P., Manning, C.E., and Harlov, D.E., Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism, Chem. Geol., 2011, vol. 282, pp. 58–66.

    Article  Google Scholar 

  149. Tropper, P., Manning, C.E., and Harlov, D.E., Experimental determination of CePO4 and YPO4 solubilities in H2O–NaF at 800°C and 1 GPa: implications for rare earth element transport in high-grade metamorphic fluids, Geofluids, 2013, vol. 13, pp. 372–380.

    Article  Google Scholar 

  150. Tsunogae, T. and van Reenen, D.D., High-to ultrahigh-temperature metasomatism related to brine infiltration in the Neoarchean Limpopo Complex: petrology and phase equilibrium modeling, Precambrian Res., 2014, vol. 253, pp. 157–170.

    Article  Google Scholar 

  151. Valley, J.W., Bohlen, S.R., Essene, E.J., et al., Metamorphism in the Adirondacks: II. The role of fluids, J. Petrol., 1990, vol. 31, pp. 555–596.

    Article  Google Scholar 

  152. van Achterbergh, E., Griffin, W.L., and Stiefenhofer, J., Metasomatism in mantle xenoliths from the letlhakane kimberlites: estimation of element fluxes, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 397–414.

    Article  Google Scholar 

  153. Visser, D., Nijland, T.G., Lieftink, D.J., and Maijer, C., The occurrence of preiswerkite in a tourmaline–biotite–scapolite rock from Blengsvatn, Norway, Am. Mineral., 1999, vol. 84, pp. 977–982.

    Article  Google Scholar 

  154. Watson, E.B. and Brenan, J.M., Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation, Earth Planet. Sci. Lett., 1987, vol. 85, pp. 594–615.

    Google Scholar 

  155. Webster, J.D., Baker, D.R., and Aiuppa, A., Halogens in mafic and intermediate-silica content magmas, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L.Y. Eds., Cham: Springer, 2018.

    Google Scholar 

  156. Weiss, Y., McNeill, J., Pearson, D.G., et al., Highly saline fluids from a subducting slab as the source for fluid-rich diamonds, Nature, 2015, vol. 524, p. 339.

    Article  Google Scholar 

  157. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  158. Yardley, B.W.D., Apatite composition and fugacities of HF and HCl in metamorphic fluids, Mineral. Mag., 1985, vol. 49, pp. 77–79.

    Article  Google Scholar 

  159. Yardley, B.W.D. and Graham, J.T., The origins of salinity in metamorphic fluids, Geofluids, 2002, vol. 2, pp. 249–256.

    Article  Google Scholar 

  160. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., and Griffin, W.L., Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt, Contrib. Mineral. Petrol., 2018, vol. 173, p. 84.

    Article  Google Scholar 

  161. Zhu, C. and Sverjensky, D.A., Partitioning of F–Cl–OH between minerals and hydrothermal fluids, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1837–1858.

    Article  Google Scholar 

  162. Zimmermann, R., Gottschalk, M., Heinrich, W., and Franz, G., Experimental Na–K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite–K-richterite join, Contrib. Mineral. Petrol., 1997, vol. 126, pp. 252–264.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the two anonymous reviewers for constructive scientific and editorial criticism.

Funding

This study was carried out under government-financed projects AAAA-A18-118020590148-3 and АААА-А18-118020590140-7 for the Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, for 2019–2021. We also utilized some materials acquired under Project 18-17-00206 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Safonov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, O.G., Butvina, V.G., Limanov, E.V. et al. Mineral Indicators of Reactions Involving Fluid Salt Components in the Deep Lithosphere. Petrology 27, 489–515 (2019). https://doi.org/10.1134/S0869591119050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119050059

Keywords:

Navigation