Skip to main content
Log in

Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We study the quantum complexity class \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\) of quantum operations implementable exactly by constant-depth polynomial-size quantum circuits with unbounded fan-out gates. Our main result is that the quantum OR operation is in \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\), which is an affirmative answer to the question posed by Høyer and Špalek. In sharp contrast to the strict hierarchy of the classical complexity classes: \({\mathsf{NC}^{0} \subsetneq \mathsf{AC}^{0} \subsetneq \mathsf{TC}^{0}}\), our result with Høyer and Špalek’s one implies the collapse of the hierarchy of the corresponding quantum ones: \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}=\mathsf{QAC}^\mathsf{0}_\mathsf{f}=\mathsf{QTC}^\mathsf{0}_\mathsf{f}}\). Then, we show that there exists a constant-depth subquadratic-size quantum circuit for the quantum threshold operation. This allows us to obtain a better bound on the size difference between the \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\) and \({\mathsf{QTC}^\mathsf{0}_\mathsf{f}}\) circuits for implementing the same operation. Lastly, we show that, if the quantum Fourier transform modulo a prime is in \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\), there exists a polynomial-time exact classical algorithm for a discrete logarithm problem using a \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\) oracle. This implies that, under a plausible assumption, there exists a classically hard problem that is solvable exactly by a \({\mathsf{QNC}^\mathsf{0}_\mathsf{f}}\) circuit with gates for the quantum Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. Aaronson (2010). BQP and the polynomial hierarchy. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), 141–150.

  • G. Brassard & P. Høyer (1997). An exact quantum polynomial-time algorithm for Simon’s problem. In Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems (ISTCS), 12–23.

  • G. Brassard, P. Høyer, M. Mosca & A. Tapp (2002). Quantum amplitude amplification and estimation. In Quantum Computation and Information, volume 305 of AMS Contemporary Mathematics, 53–74. American Mathematical Society.

  • D. E. Browne, E. Kashefi & S. Perdrix (2011). Computational depth complexity of measurement-based quantum computation. In Proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography (TQC), volume 6519 of Lecture Notes in Computer Science, 35–46.

  • A. K. Chandra, S. Fortune & R. Lipton (1983). Unbounded fan-in circuits and associative functions. In Proceedings of the 15th ACM Symposium on Theory of Computing (STOC), 52–60.

  • R. Cleve & J. Watrous (2000). Fast parallel circuits for the quantum Fourier transform. In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 526–536.

  • W. van Dam (2003). Quantum computing discrete logarithms with the help of a preprocessed state. arXiv:quant-ph/0311134.

  • S. Fenner, F. Green, S. Homer & Y. Zhang (2005). Bounds on the power of constant-depth quantum circuits. In Proceedings of Fundamentals of Computation Theory (FCT), volume 3623 of Lecture Notes in Computer Science, 44–55.

  • Furst M., Saxe J.B., Sipser M. (1984) Parity, circuits, and the polynomial hierarchy. Mathematical Systems Theory 17: 13–27

    Article  MathSciNet  MATH  Google Scholar 

  • Green F., Homer S., Moore C., Pollett C. (2002) Counting, fanout, and the complexity of quantum ACC. Quantum Information and Computation 2(1): 35–65

    MathSciNet  MATH  Google Scholar 

  • L. Hales & S. Hallgren (2000). An improved quantum Fourier transform algorithm and applications. In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 515–525.

  • M. J. Hoban, E. T. Campbell, K. Loukopoulos & D. E. Browne (2011). Non-adaptive measurement-based quantum computation and multi-party Bell inequalities. New Journal of Physics 13(023014).

  • Høyer P. Špalek R. (2005) Quantum fan-out is powerful. Theory of Computing 1(5): 81–103

    Article  MathSciNet  MATH  Google Scholar 

  • Moore C., Nilsson M. (2001) Parallel quantum computation and quantum codes. SIAM Journal on Computing 31(3): 799–815

    Article  MathSciNet  MATH  Google Scholar 

  • Mosca M., Zalka Ch. (2004) Exact quantum Fourier transforms and discrete logarithm algorithms. International Journal of Quantum Information 2(1): 91–100

    Article  MATH  Google Scholar 

  • M. A. Nielsen & I. L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge University Press.

  • R. O’Donnell (2008). Some topics in analysis of Boolean functions. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), 569–578.

  • Pohlig S.C., Hellman M.E. (1978) An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24(1): 106–110

    Article  MathSciNet  MATH  Google Scholar 

  • Shor P.W. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5): 1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  • Siu K.-Y., Bruck J., Kailath T., Hofmeister T. (1993) Depth efficient neural networks for division and related problems. IEEE Transactions on Information Theory 39(3): 946–956

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Takahashi & S. Tani (2013). Collapse of the hierarchy of constant-depth exact quantum circuits. In Proceedings of the 28th IEEE Conference on Computational Complexity (CCC), 168–178.

  • H. Vollmer (1999). Introduction to Circuit Complexity. Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, Y., Tani, S. Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits. comput. complex. 25, 849–881 (2016). https://doi.org/10.1007/s00037-016-0140-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0140-0

Keywords

Subject classification

Navigation