Skip to main content
Log in

Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae)

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

This study examines genetic relationships among and within the South American species of Oreobolus that span the temperate and tropical Andes hotspots and represent a good case study to investigate diversification in the Páramo. A total of 197 individuals covering the distributional range of most of these species were sequenced for the nuclear ribosomal internal transcribed spacer (ITS) and 118 individuals for three chloroplast DNA regions (trnL-F, trnH-psbA and rpl32-trnL). Haplotype networks and measures of genetic diversity were calculated at different taxonomic and geographic levels. To test for possible geographic structure, a spatial analysis of molecular variance (SAMOVA) was undertaken and species relationships were recovered using a coalescent-based approach. Results indicate complex relationships among the five South American species of Oreobolus, which are likely to have been confounded by incomplete lineage sorting, though hybridization cannot be completely discarded as an influence on genetic patterns, particularly among the northern populations of O. obtusangulus and O. cleefii. We report a case of cryptic speciation in O. obtusangulus where northern and southern populations of morphologically similar individuals are genetically distinct in all analyses. At the population level, the genetic evidence is consistent with contraction and expansion of islands of Páramo vegetation during the climatic fluctuations of the Quaternary, highlighting the role of these processes in shaping modern diversity in that ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott R, Albach D, Ansell S et al (2013) Hybridization and speciation. J Evol Biol 26:229–246. doi:10.1111/j.1420-9101.2012.02599.x

    Article  CAS  PubMed  Google Scholar 

  • Assefa A, Ehrich D, Taberlet P et al (2007) Pleistocene colonization of afro-alpine “sky islands” by the arctic-alpine Arabis alpina. Heredity 99:133–142. doi:10.1038/sj.hdy.6800974

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert R, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 17:1–11. doi:10.1186/s12862-017-0890-6

    Article  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. doi:10.1371/journal.pcbi.1003537

    Article  PubMed  PubMed Central  Google Scholar 

  • Britton MN, Hedderson TA, Verboom GA (2014) Topography as a driver of cryptic speciation in the high-elevation cape sedge Tetraria triangularis (Boeck.) C. B. Clarke (Cyperaceae: Schoeneae). Mol Phylogenet Evol 77:96–109. doi:10.1016/j.ympev.2014.03.024

    Article  PubMed  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265. doi:10.1093/molbev/msh018

    Article  CAS  PubMed  Google Scholar 

  • Burban C, Petit R, Carcreff E, Jactel H (1999) Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8:1593–1602

    Article  CAS  PubMed  Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobón C (2010) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33. doi:10.1111/j.1466-8238.2010.00585.x

    Article  Google Scholar 

  • Chacón J, Madriñán S, Chase MW, Bruhl JJ (2006) Molecular phylogenetics of Oreobolus (Cyperaceae) and the origin and diversification of the American species. Taxon 55:359–366

    Article  Google Scholar 

  • Cutter AD (2013) Integrating phylogenetics, phylogeography and population genetics through genomes and evolutionary theory. Mol Phylogenet Evol 69:1172–1185. doi:10.1016/j.ympev.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340. doi:10.1016/j.tree.2009.01.009

    Article  PubMed  Google Scholar 

  • Doyle J, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Drummond AJ, Bouckaert RR (2015) Bayesian evolutionary analysis with BEAST, First. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • French GC (2003) Conservation genetics of British Euphrasia L. University of Edinburgh and Royal Botanic Garden Edinburgh, Edinburgh

    Google Scholar 

  • Gizaw A, Kebede M, Nemomissa S et al (2013) Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine “sky islands” inferred from AFLPs and plastid DNA sequences. Flora 208:453–463. doi:10.1016/j.flora.2013.07.007

    Article  Google Scholar 

  • Gizaw A, Wondimu T, Mugizi TF et al (2016) Vicariance, dispersal, and hybridization in a naturally fragmented system: the afro-alpine endemics Carex monostachya and C. runssoroensis (Cyperaceae). Alpine Bot 126:59–71. doi:10.1007/s00035-015-0162-2

    Article  Google Scholar 

  • Gómez-Gutiérrez MC (2016) Evolution in the high-altitude Páramo ecosystem. The University of Edinburgh, PhD thesis

  • Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. doi:10.1111/j.1471-8278.2004.00828.x

    Article  Google Scholar 

  • Graham A (2009) The Andes: a geological overview from a biological perspective. Ann Mo Bot Gard 96:371–385. doi:10.3417/2007146

    Article  Google Scholar 

  • Griffin PC, Hoffmann AA (2014) Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. Ann Bot 113:953–965. doi:10.1093/aob/mcu017

    Article  PubMed  PubMed Central  Google Scholar 

  • Heled J, Drummond AJ (2012) Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 61:138–149. doi:10.1093/sysbio/syr087

    Article  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B Biol Sci 359:183–195. doi:10.1098/rstb.2003.1388

    Article  CAS  Google Scholar 

  • Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380. doi:10.1093/sysbio/syp035

    Article  PubMed  Google Scholar 

  • Hooghiemstra H, van der Hammen T (2004) Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans R Soc B Biol Sci 359:173–181. doi:10.1098/rstb.2003.1420

    Article  Google Scholar 

  • Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Mo Bot Gard 93:297–324. doi:10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612. doi:10.1093/molbev/msl018

    Article  CAS  PubMed  Google Scholar 

  • Kadu CAC, Konrad H, Schueler S et al (2013) Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands. Ann Bot 111:47–60. doi:10.1093/aob/mcs235

    Article  PubMed  PubMed Central  Google Scholar 

  • Kebede M, Ehrich D, Taberlet P et al (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243. doi:10.1111/j.1365-294X.2007.03232.x

    Article  CAS  PubMed  Google Scholar 

  • Kolář F, Dušková E, Sklenář P (2016) Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes. Mol Ecol 25:4593–4610. doi:10.1111/mec.13788

    Article  PubMed  Google Scholar 

  • Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution, and botanical literature, First. The New York Botanical Garden Press, New York

    Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30. doi:10.1080/10635150500354928

    Article  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2014) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:1–7. doi:10.3389/fgene.2013.00192/abstract

    Article  Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147. doi:10.1016/S0169-5347(00)89023-0

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Cronk QCB (1997) Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am J Bot 84:956–965

    Article  PubMed  Google Scholar 

  • Moore DM (1967) Chromosome numbers of Falkland Islands angiosperms. Br Antarct Surv Bull 14:69–82

    Google Scholar 

  • Mora-Osejo LE (1987) Estudios morfológicos, autoecológicos y sistemáticos en Angiospermas. Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Bogotá

    Google Scholar 

  • Naciri Y, Linder HP (2015) Species delimitation and relationships: the dance of the seven veils. Taxon 64:3–16. doi:10.12705/641.24

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Drummond AJ (2015) TreeAnnotator: MCMC output analysis. Version 2.3.0. http://tree.bio.ed.ac.uk/software/beast

  • Rambaut A, Suchard MA, Xie W, Drummond AJ (2013) Tracer: MCMC trace analysis tool. Version 1.6.0. http://tree.bio.ed.ac.uk/software/tracer

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article  CAS  PubMed  Google Scholar 

  • Särkinen T, Pennington RT, Lavin M et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. J Biogeogr 39:884–900. doi:10.1111/j.1365-2699.2011.02644.x

    Article  Google Scholar 

  • Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi:10.1046/j.1365-294x.1998.00318.x

    Article  Google Scholar 

  • Seberg O (1988) Taxonomy, phylogeny, and biogeography of the genus Oreobolus R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Bot J Linn Soc 96:119–195. doi:10.1111/j.1095-8339.1988.tb00632.x

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in Angiosperms: the tortoise and the hare III. Am J Bot 94:275–288. doi:10.3732/ajb.94.3.275

    Article  CAS  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Simpson BB (1975) Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1:273–294. doi:10.2307/2400369

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737. doi:10.1043/02-64.1

    Google Scholar 

  • Teacher AGF, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153. doi:10.1111/j.1755-0998.2010.02890.x

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  CAS  PubMed  Google Scholar 

  • Tremetsberger K, Urtubey E, Terrab A et al (2009) Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol Ecol 18:3668–3682. doi:10.1111/j.1365-294X.2009.04298.x

    Article  CAS  PubMed  Google Scholar 

  • van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Article  Google Scholar 

  • van der Hammen T, Cleef AM (1986) Development of the high Andean Páramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography, First. Oxford University Press Inc, New York, pp 153–201

    Google Scholar 

  • Vásquez DLA, Balslev H, Hansen MM et al (2016) Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. doi:10.1007/s00035-016-0165-7

    Google Scholar 

  • Wondimu T, Gizaw A, Tusiime FM et al (2013) Crossing barriers in an extremely fragmented system: two case studies in the afro-alpine sky island flora. Plant Syst Evol 300:415–430. doi:10.1007/s00606-013-0892-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a School of Biological Sciences Scholarship provided through The University of Edinburgh. We thank the herbaria at Aarhus University, (Denmark), Naturalis (The Netherlands) and Reading University (Great Britain) for making material available for DNA extraction. We also thank three anonymous reviewers for their valuable comments and James Nicholls from The University of Edinburgh for assistance with the *BEAST analysis.

Author information

Authors and Affiliations

Authors

Contributions

MCGG and JER devised the project. LEN assisted with data analyses. MCGG drafted the text, with substantial contributions by JER, RTP and LEN. All authors contributed to final editing.

Corresponding author

Correspondence to James E. Richardson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

35_2017_192_MOESM1_ESM.pdf

Supplementary Fig. 1 MST and distribution of ITS haplotypes. Numbers refer to haplotypes listed in Supplementary Table 5. Haplotypes are coloured according to species. Shared haplotypes are shown in white. Detail of species sharing haplotypes is given in Fig. 3. Hypothetical haplotypes are represented by filled black circles. Letters on the map refer to clusters as described in Fig. 1 and Supplementary Table 3. Pie charts are proportional to sample size for each cluster (N = 1 – 34). Numbers next to each segment refer to haplotype number. NA: northern Andes, SA: southern Andes (PDF 1760 kb)

35_2017_192_MOESM2_ESM.pdf

Supplementary Fig. 2 MST and distribution of cpDNA (trnL-F, trnH-psbA and rpl32-trnL) haplotypes. Numbers refer to haplotypes listed in Supplementary Table 6. Haplotypes are coloured according to species. Shared haplotypes are shown in white. Detail of species sharing haplotypes is given in Fig. 5. Hypothetical haplotypes are represented by filled black circles, numbers within indicate their number when more than one. Letters on the map refer to clusters as described in Fig. 1 and Supplementary Table 3. Pie charts are proportional to sample size for each cluster (N = 1 – 25). Numbers next to each segment refer to haplotype number. NA: northern Andes, SA: southern Andes (PDF 1769 kb)

35_2017_192_MOESM3_ESM.pdf

Supplementary Fig. 3 NeighborNet network showing genetic relatedness amongst the South American species of Oreobolus based on ITS FST pairwise values considering (a) O. obtusangulus as one species (b) O. obtusangulus as two species (PDF 16 kb)

35_2017_192_MOESM4_ESM.pdf

Supplementary Fig. 4 NeighborNet network showing genetic relatedness amongst the South American species of Oreobolus based on cpDNA (trnL-F, trnH-psbA and rpl32-trnL) FST pairwise values considering (a) O. obtusangulus as one species (b) O. obtusangulus as two species (PDF 15 kb)

Supplementary material 5 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gutiérrez, M.C., Pennington, R.T., Neaves, L.E. et al. Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae). Alp Botany 127, 155–170 (2017). https://doi.org/10.1007/s00035-017-0192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-017-0192-z

Keywords

Navigation