Skip to main content
Log in

High-Efficiency Environmental-Friendly Fe–W–Ti Catalyst for Selective Catalytic Reduction of NO with NH3: The Structure–Activity Relationship

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Iron-based catalysts are nontoxic and have outstanding medium-temperature activity, which are considered as potential catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR). In this work, Fe (0.2)-W (0.05)-Ti catalyst prepared by deposition–precipitation exhibited over 90% NOx conversion within the range of 280–420 °C and excellent resistance to SO2 or H2O. The excellent catalytic performance was due to the high proportion of Fe2+/(Fe2+ + Fe3+) and Oads/(Oads + Olat) ratio and abundant surface acid sites. However, the catalyst lost part low-temperature catalytic performance after hydrothermal aging at 670 °C for 64 h. The surface area, proportion of Fe2+/(Fe2+ + Fe3+) and Oads/(Oads + Olat) decreased significantly after aged. As a result, the lack of sufficiently active site to produce NO2 resulted in the significant decrease for NOx conversion at low-temperature section. Simultaneously, the decline of the surface acidity, especially the strong acid, meant that the adsorption capacity of the catalyst under high temperature weakened and the NO conversion corresponding declined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang W, McCool G, Kapur N, Yuan G, Shan B, Nguyen M, Graham UM, Davis BH, Jacobs G, Cho K, Hao X (2012) Science 337:832

    Article  CAS  Google Scholar 

  2. Parks JE II (2010) Science 327:1584

    Article  CAS  Google Scholar 

  3. Zhao K, Han W, Zhang G, Lv G, Lu J, Tang Z, Zhen X (2015) J Mol Catal (Chinese) 29:494

    CAS  Google Scholar 

  4. Liu F, Asakura K, He H, Liu Y, Shan W, Shi X, Zhang C (2011) Catal Today 164:520

    Article  CAS  Google Scholar 

  5. Liu F, Asakura K, He H, Shan W, Shi X, Zhang C (2011) Appl Catal B 103:369

    Article  CAS  Google Scholar 

  6. Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010) Appl Catal B 96:408

    Article  CAS  Google Scholar 

  7. Liu F, He H (2010) J Phys Chem C 114:16929

    Article  CAS  Google Scholar 

  8. Burch R, Millington PJ (1996) Catal Today 29:37

    Article  CAS  Google Scholar 

  9. Shelef M (1995) Chem Rev 95:209

    Article  CAS  Google Scholar 

  10. Choung JW, Nam IS, Ham SW (2006) Catal Today 111:242

    Article  CAS  Google Scholar 

  11. Kompio PGWA, Brückner A, Hipler F, Auer G, LÓ§ffler E, Grünert W (2012) J Catal 286:237

    Article  CAS  Google Scholar 

  12. Liu F, Shan W, Lian Z, Xie L, Yang W, He H (2013) Catal Sci Technol 3:2699

    Article  CAS  Google Scholar 

  13. Shan W, Liu F, He H, Shi X, Zhang C (2011) Chem Commun 47:8046

    Article  CAS  Google Scholar 

  14. Shan W, Geng Y, Chen X, Huang N, Liu F, Yang S (2016) Catal Sci Technol 6:1195

    Article  CAS  Google Scholar 

  15. Shan W, Liu F, Yu Y, He H, Deng C, Zi X (2015) Catal Commun 59:226

    Article  CAS  Google Scholar 

  16. Wang H, Qu Z, Dong S, Xie H, Tang C (2016) Environ Sci Technol 50:13511

    Article  CAS  Google Scholar 

  17. Wang H, Qu Z, Dong S, Tang C (2017) Acs Appl Mater Interfaces 9:7017

    Article  CAS  Google Scholar 

  18. Li X, Li J, Peng Y, Zhang T, Liu S, Hao (2015) J Catal Sci Technol 5:4556

    Article  CAS  Google Scholar 

  19. Andonova S, Tamm S, Montreuil C, Lambert C, Olsson L (2016) Appl Catal B 180:775

    Article  CAS  Google Scholar 

  20. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) Appl Catal B 165:438

    Article  CAS  Google Scholar 

  21. Shan W, Liu F, He H, Shi X, Zhang C (2012) Appl Catal B 100:115–116

    Google Scholar 

  22. Zhang Q, Liu X, Ning P, Song Z, Li H, Gu J (2015) Catal Sci Technol 5:2260

    Article  CAS  Google Scholar 

  23. Zhou H, Su Y, Liao W, Deng W, Zhong F (2016) Fuel 182:352

    Article  CAS  Google Scholar 

  24. Liu Z, Zhu J, Zhang S, Ma L, Woo SI (2014) Catal Commun 46:90

    Article  CAS  Google Scholar 

  25. Zhou W, Fu H, Pan K, Tian C, Qu Y, Lu P, Sun C (2008) J Phys Chem C 112:19584

    Article  CAS  Google Scholar 

  26. Xiong ZB, Wu C, Hu Q, Wang YZ, Jin J, Lu CM, Guo DX (2016) Chem Eng J 286:459

    Article  CAS  Google Scholar 

  27. Liu F, He H, Zhang C (2008) Chem Commun 17:2043

  28. Zhao K, Han W, Lu G, Lu J, Tang Z, Zhe X (2016) Appl Surf Sci 379:316

    Article  CAS  Google Scholar 

  29. Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K (2010) Catal Commun 11:465

    Article  CAS  Google Scholar 

  30. Shwan S, Jansson J, Olsson L, Skoglundh M (2015) Appl Catal B 277:166–167

    Google Scholar 

  31. Peng Y, Li K, Li J (2013) Appl Catal B 483:140–141

    Google Scholar 

  32. Jiang S, Zhou R (2015) Fuel Process Technol 133: 220

  33. Roy S, Viswanath B, Hegde MS, Madras G (2008) J Phys Chem C 112:6002

    Article  CAS  Google Scholar 

  34. Huang H, Shan W, Yang S, Zhang J (2014) Catal Sci Technol 4:3611

    Article  CAS  Google Scholar 

  35. Ma Z, Weng D, Wu X, Si Z, Wang B (2012) Catal Commun 27:97

    Article  CAS  Google Scholar 

  36. Barton D, Soled S, Meitzner G, Fuentes G, Iglesia E (1999) J Catal 181:57

    Article  CAS  Google Scholar 

  37. Chen Z, Wang F, Li H, Yang Q, Wang L, Li X (2012) Ind Eng Chem Res 51:202

    Article  CAS  Google Scholar 

  38. Giecko G, Borowiecki T, Gac W, Kruk J (2008) Catal Today 137:403

    Article  CAS  Google Scholar 

  39. Putluru S, Schill L, Jensen A, Siret B, Tabaries F, Fehrmann R (2015) Appl Catal B 165:628

    Article  CAS  Google Scholar 

  40. Liu J, Meeprasert JA, Namuangruk S, Zha K, Li H, Huang L, Maitarad P, Shi L, Zhang D (2017) J Phys Chem C 121:4970

    Article  CAS  Google Scholar 

  41. Liu J, Du Y, Liu J, Zhao Z, Cheng K, Chen Y, Wei Y, Song W, Zhang X (2017) Appl Catal B 203:704

    Article  CAS  Google Scholar 

  42. Foo R, Vazhnova T, Lukyanov DB, Millington P, Collier J, Rajaram R, Golunski S (2015) Appl Catal B 162:174

    Article  CAS  Google Scholar 

  43. Wang H, Qu Z, Dong S, Tang C (2017) Catal Today. doi: https://doi.org/10.1016/j.cattod.2017.05.071

    Google Scholar 

  44. Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J (2014) Environ Sci Technol 48:10354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Service Network Initiative (STS) of Chinese Academy of Science (KFJ-SW-STS-149), the National Natural Science Foundation of China (21407154, 21507137), Province Natural Science Foundation of GanSu (17jRSRA317) and the West Light Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 933 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Han, W., Tang, Z. et al. High-Efficiency Environmental-Friendly Fe–W–Ti Catalyst for Selective Catalytic Reduction of NO with NH3: The Structure–Activity Relationship. Catal Surv Asia 22, 20–30 (2018). https://doi.org/10.1007/s10563-017-9238-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9238-x

Keywords

Navigation