Skip to main content
Log in

Peristaltic transport of thixotropic fluids: A numerical simulation

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Peristaltic flow of a thixotropic fluid obeying the Moore model is numerically studied using the multiple-relaxation-time lattice Boltzmann method (MRT-LBM). Converged results could be obtained in a planar two-dimensional channel at large Reynolds numbers for arbitrary wavelengths and amplitude ratios for nonzero Reynolds numbers. It is shown that depending on the Reynolds number and the parameters of the propagating wave, the time constant introduced through a fluid’s thixotropy may increase the mean flow rate of peristaltic pumps. Our numerical results suggest that for thixotropic fluids there exists a threshold wav-enumber for the peristaltic wave above which thixotropy can boost fluid transport but below which it can have an opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitavade, E.N., S.D. Patil, A.N. Kadam, and T.S. Mulla, 2012, An overview of peristaltic pump suitable for handling of various slurries and liquids, IOSR J. Mech. Civil Eng. 19–24.

  • Akbar, N.S., D. Tripathi, Z.H. Khan, and O.A. Bég, 2018, Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia, Math. Biosci. 301, 121–128.

    Article  Google Scholar 

  • Ceniceros, H.D. and J.E. Fisher, 2012, Peristaltic pumping of a viscoelastic fluid at high occlusion ratios and large Weissenberg numbers, J. Non-Newton. Fluid Mech. 171–172, 31–41.

    Article  Google Scholar 

  • Chakradhar, K., T.V.A.P. Sastry, and S. Sreenadh, 2012, Peristaltic transport of Bingham fluid in a channel with permeable walls, Int. J. Innov. Technol. Creat. Eng. 2, 17–23.

    Google Scholar 

  • Chaube, M.K., A. Yadav, D. Tripathi, and O.A. Bé 2018a, Electroosmotic flow of biorheological micropolar fluids through microfluidic channels, Korea-Aust. Rheol. J. 30, 89–98

    Article  Google Scholar 

  • Chaube, M.K., A. Yadav, and Y. Dharmendra, 2018b, Electroosmotically induced alterations in peristaltic microflows of power law fluids through physiological vessels, J. Braz. Soc. Mech. Sci. Eng. 40, 423.

    Article  Google Scholar 

  • Chen, S. and G.D. Doolen, 1998, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30, 329–364

    Article  Google Scholar 

  • Derksen, J.J. and Prashant, 2009, Simulations of complex flow of thixotropic liquids, J. Non-Newton. Fluid Mech. 160, 65–75.

    Article  Google Scholar 

  • Eggels, J.G.M. and J.A. Somers, 1995, Numerical simulation of free convective flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow 16, 357–364.

    Article  Google Scholar 

  • Hayat, T., Y. Wang, K. Hutter, S. Asghar, and A.M. Siddiqui, 2004, Peristaltic transport of an Oldroyd-B fluid in a planar channel, Math. Probl. Eng. 2004, 347–376.

    Article  Google Scholar 

  • Jaffrin, M.Y. and A.H. Shapiro, 1971, Peristaltic pumping, Annu. Rev. Fluid Mech. 3, 13–37.

    Article  Google Scholar 

  • Khabazi, N.P., S.M. Taghavi, and K. Sadeghy, 2016, Peristaltic flow of Bingham fluids at large Reynolds numbers: A numerical study, J. Non-Newton. Fluid Mech. 227, 30–44.

    Article  Google Scholar 

  • Kumar, B.V.R. and K.B. Naidu, 1995, A numerical study of peristaltic flows, Comput. Fluids 24, 161–176.

    Article  Google Scholar 

  • Küng, V.E., F. Osmanlic, M. Markl, and C. Körner;, 2018;, Comparison of passive scalar transport models coupled with the Lattice Boltzmann method, Comput. Math. Appl. In press.

  • Lallemand, P. and L.S. Luo, 2000, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E 61, 6546–6562.

    Article  Google Scholar 

  • Mewis, J., 1997, Thixotropy-a general review, J. Non-Newton. Fluid Mech. 6, 1–20.

    Article  Google Scholar 

  • Mezrhab, A., M. Bouzidi, and P. Lallemand, 2004, Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput. Fluids 33, 623–641.

    Article  Google Scholar 

  • Mohamad, A.A., 2011, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer-Verlag London, London.

    Book  Google Scholar 

  • Moore, F., 1959, The rheology of ceramic slip and bodies, Trans. Brit. Ceram. Soc. 58, 470–492.

    Google Scholar 

  • Narla, V.K., D. Tripathi, O.A. Bég, and A. Kadir, 2018, Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel, J. Eng. Math. 111, 127–143.

    Article  Google Scholar 

  • Nezamidoost, S. and K. Sadeghy, 2012, Peristaltic pumping of thixotropic fluids: A numerical study, Nihon Reoroji Gakkaishi 40, 1–9.

    Article  Google Scholar 

  • Poursharifi, Z., H. Asadi, and K. Sadeghy, 2018, Effect of pillars on the mixing efficiency of a peristaltically-driven Bingham fluid within a closed channel: A LBM simulation, Korea-Aust. Rheol. J. 30, 75–88.

    Article  Google Scholar 

  • Pozrikidis, C., 1987, A study of peristaltic flow, J. Fluid Mech. 180, 515–527.

    Article  Google Scholar 

  • Prakash, J. and D. Tripathi, 2018, Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis, J. Mol. Liq. 256, 352–371.

    Article  Google Scholar 

  • Prakash, J., E.P. Siva, D. Tripathi, S. Kuharat, and O.A. Bég, 2019, Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump, Renew. Energy 133, 1308–1326.

    Article  Google Scholar 

  • Ranjit, N.K., G.C. Shit, and D. Tripathi, 2018, Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic, Microvasc. Res. 117, 74–89.

    Article  Google Scholar 

  • Rao, A.R. and M. Mishra, 2004, Peristaltic transport of a power-law fluid in a porous tube, J. Non-Newton. Fluid Mech. 121, 163–174.

    Article  Google Scholar 

  • Selverov, K.P. and H.A. Stone, 2001, Peristaltically driven channel flows with applications toward micromixing, Phys. Fluids 13, 1837–1859.

    Article  Google Scholar 

  • Takabatake, S. and K. Ayukawa, 1982, Numerical study of two-dimensional peristaltic flows, J. Fluid Mech. 122, 439–465.

    Article  Google Scholar 

  • Tiribocchi, A., N. Stella, G. Gonnella, and A. Lamura, 2009, Hybrid lattice Boltzmann model for binary fluid mixtures, Phys. Rev. E 80, 026701.

    Article  Google Scholar 

  • Tripathi, D., A. Sharma, and O.A. Bég, 2018a, Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation, Adv. Powder Technol. 29, 639–653.

    Article  Google Scholar 

  • Tripathi, D., A. Yadav, O.A. Bég, and R. Kumar, 2018b, Study of microvascular non-Newtonian blood flow modulated by electroosmosis, Microvasc. Res. 117, 28–36.

    Article  Google Scholar 

  • Vajravelu, K., S. Sreenadh, and V.R. Babu, 2005, Peristaltic pumping of a Herschel-Bulkley fluid in a channel, Appl. Math. Comput. 169, 726–735.

    Google Scholar 

  • Yi, M., H.H. Bau, and H. Hu, 2002, Peristaltically induced motion in a closed cavity with two vibrating walls, Phys. Fluids 14, 184–197.

    Article  Google Scholar 

  • Zhang, R., H. Fan, and H. Chen, 2011, A lattice Boltzmann approach for solving scalar transport equations, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369, 2264–2273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sadeghy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, S.M.J., Khabazi, N.P., Bazargan, S. et al. Peristaltic transport of thixotropic fluids: A numerical simulation. Korea-Aust. Rheol. J. 31, 71–79 (2019). https://doi.org/10.1007/s13367-019-0008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0008-3

Keywords

Navigation