Skip to main content
Log in

Strain Rate Sensitivity and Deformation Mechanism of Carbon Nanotubes Reinforced Aluminum Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation mechanism of carbon nanotubes (CNTs) reinforced Al (CNT/Al) composites at room temperature is yet to be discovered. In this study, CNT/Al composites and ultrafine-grained (UFG) Al prepared by flake powder metallurgy were subjected to strain rate jump tests to study the effect of CNTs on the deformation mechanism of the UFG Al. The results showed that the addition of CNTs greatly influenced the deformation behavior and microstructure, and with CNTs increasing from 0 to 2 vol pct, the strain rate sensitivity increased from 0.015 to 0.024, while the apparent activation volume decreased from 71.7 b3 to 39.3 b3. This phenomenon originated from both the CNTs constrained grain refinement and the increasing dislocation density caused by CNTs, nanocrystalline grains, and intragranular Al4C3. Thermal activation analysis indicated that the rate-controlling mechanisms of both the UFG Al and CNT/Al composites were the forest dislocation cutting. This work may provide insight into stabilizing uniform tensile deformation by increasing strain rate hardening in metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Acta Mater., 2007, vol. 55, pp. 4041–65.

    Article  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–556.

    Article  Google Scholar 

  3. H. Van Swygenhoven: Science, 2002, vol. 296, pp. 66–7.

    Article  Google Scholar 

  4. Y.T. Zhu and T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 409, pp. 234–42.

    Article  Google Scholar 

  5. B. Zhu, R.J. Asaro, P. Krysl, and R. Bailey: Acta Mater., 2005, vol. 53, pp. 4825–38.

    Article  Google Scholar 

  6. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71–9.

    Article  Google Scholar 

  7. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nat. Mater., 2003, vol. 3, p. 43.

    Article  Google Scholar 

  8. L. Jiang, H. Wen, H. Yang, T. Hu, T. Topping, D. Zhang, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2015, vol. 89, pp. 327–43.

    Article  Google Scholar 

  9. L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, and X.-C. Li: Nature, 2015, vol. 528, p. 539.

    Article  Google Scholar 

  10. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma: Nat. Mater., 2013, vol. 12, p. 344.

    Article  Google Scholar 

  11. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, and S.M. Han: Nat. Commun., 2013, vol. 4, p. 2114.

    Article  Google Scholar 

  12. D. Zhou, H. Geng, D. Zhang, W. Zeng, C. Kong, and P. Munroe: Mater. Sci. Eng. A, 2017, vol. 688, pp. 164–8.

    Article  Google Scholar 

  13. Z. Li, L. Zhao, Q. Guo, Z. Li, G. Fan, C. Guo, and D. Zhang: Scr. Mater., 2017, vol. 131, pp. 67–71.

    Article  Google Scholar 

  14. L. Zhao, Q. Guo, Z. Li, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, Z. Tan, and D. Zhang: Int. J. Plast., 2018, vol. 105, pp. 128–40.

    Article  Google Scholar 

  15. S.C. Tjong: Mater. Sci. Eng. R Reports, 2013, vol. 74, pp. 281–350.

    Article  Google Scholar 

  16. S.R. Bakshi, D. Lahiri, and A. Agarwal: Int. Mater. Rev., 2010, vol. 55, pp. 41–64.

    Article  Google Scholar 

  17. B. Chen, S. Li, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh: Micron, 2015, vol. 69, pp. 1–5.

    Article  Google Scholar 

  18. X. Yang, E. Liu, C. Shi, C. He, J. Li, N. Zhao, and K. Kondoh: J. Alloys Compd., 2013, vol. 563, pp. 216–20.

    Article  Google Scholar 

  19. X. Yang, T. Zou, C. Shi, E. Liu, C. He, and N. Zhao: Mater. Sci. Eng. A, 2016, vol. 660, pp. 11–8.

    Article  Google Scholar 

  20. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma: Carbon N. Y., 2013, vol. 62, pp. 35–42.

    Article  Google Scholar 

  21. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki: Carbon N. Y., 2009, vol. 47, pp. 570–7.

    Article  Google Scholar 

  22. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang: Carbon N. Y., 2012, vol. 50, pp. 1993–8.

    Article  Google Scholar 

  23. R. Xu, Z. Tan, D. Xiong, G. Fan, Q. Guo, J. Zhang, Y. Su, Z. Li, and D. Zhang: Compos. Part A Appl. Sci. Manuf., 2017, vol. 96, pp. 57–66.

    Article  Google Scholar 

  24. H.J. Choi and D.H. Bae: Scr. Mater., 2011, vol. 65, pp. 194–7.

    Article  Google Scholar 

  25. F. Mokdad, D.L. Chen, Z.Y. Liu, D.R. Ni, B.L. Xiao, and Z.Y. Ma: Mater. Sci. Eng. A, 2017, vol. 695, pp. 322–31.

    Article  Google Scholar 

  26. W.J. Kim and S.H. Lee: Compos. Part A Appl. Sci. Manuf., 2014, vol. 67, pp. 308–15.

    Article  Google Scholar 

  27. F. Mokdad, D.L. Chen, Z.Y. Liu, D.R. Ni, B.L. Xiao, and Z.Y. Ma: Mater. Sci. Eng. A, 2017, vol. 702, pp. 425–37.

    Article  Google Scholar 

  28. W. HE, C. LI, B. LUAN, R. QIU, K. WANG, Z. LI, and Q. LIU: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3578–84.

    Article  Google Scholar 

  29. G. Fan, H. Huang, Z. Tan, D. Xiong, Q. Guo, M. Naito, Z. Li, and D. Zhang: Mater. Sci. Eng. A, 2017, vol. 708, pp. 537–43.

    Article  Google Scholar 

  30. H. Huang, G. Fan, Z. Tan, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, and D. Zhang: Mater. Sci. Eng. A, 2017, vol. 699, pp. 55–61.

    Article  Google Scholar 

  31. M.S. Mohebbi, A. Akbarzadeh, B.H. Kim, and S.-K. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5442–50.

    Article  Google Scholar 

  32. J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Mater. Sci. Eng. A, 2013, vol. 585, pp. 108–13.

    Article  Google Scholar 

  33. H. Miyamoto, K. Ota, and T. Mimaki: Scr. Mater., 2006, vol. 54, pp. 1721–5.

    Article  Google Scholar 

  34. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh: Proc. Natl. Acad. Sci., 2007, vol. 104, pp. 3031–6.

    Article  Google Scholar 

  35. A.C. Leff, C.R. Weinberger, and M.L. Taheri: Ultramicroscopy, 2015, vol. 153, pp. 9–21.

    Article  Google Scholar 

  36. B. Beausir, C. Fressengeas, J. Fundenberger: Université de Lorraine - Metz, ATOM–Analysis Tools for Orientation Maps, http://atom-software.edu. 2015.

  37. R. Xu, G. Fan, Z. Tan, G. Ji, C. Chen, B. Beausir, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, and D. Zhang: Mater. Res. Lett., 2018, vol. 6, pp. 113–20.

    Article  Google Scholar 

  38. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  Google Scholar 

  39. H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji: Mater. Trans., 2015, vol. 56, pp. 671–8.

    Article  Google Scholar 

  40. G. Dirras, J. Gubicza, D. Tingaud, and S. Billard: Mater. Chem. Phys., 2011, vol. 129, pp. 846–52.

    Article  Google Scholar 

  41. H.A. Wriedt: Bull. Alloy Phase Diagrams, 1985, vol. 6, pp. 548–53.

    Article  Google Scholar 

  42. L. Yan, Z. Tan, G. Ji, Z. Li, G. Fan, D. Schryvers, A. Shan, and D. Zhang: Mater. Charact., 2016, vol. 112, pp. 213–8.

    Article  Google Scholar 

  43. Y.M. Wang, A. V Hamza, and E. Ma: Acta Mater., 2006, vol. 54, pp. 2715–26.

    Article  Google Scholar 

  44. Q. Wei: J. Mater. Sci., 2007, vol. 42, pp. 1709–27.

    Article  Google Scholar 

  45. J. May, H.W. Höppel, and M. Göken: Scr. Mater., 2005, vol. 53, pp. 189–94.

    Article  Google Scholar 

  46. C. Duhamel, Y. Brechet, and Y. Champion: Int. J. Plast., 2010, vol. 26, pp. 747–57.

    Article  Google Scholar 

  47. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259–71.

    Article  Google Scholar 

  48. T. Suo, Y. Chen, Y. Li, C. Wang, and X. Fan: Mater. Sci. Eng. A, 2013, vol. 560, pp. 545–51.

    Article  Google Scholar 

  49. G.A. Malygin: Phys. Solid State, 2007, vol. 49, pp. 2266–73.

    Article  Google Scholar 

  50. A. Misra, J.P. Hirth, and R.G. Hoagland: Acta Mater., 2005, vol. 53, pp. 4817–24.

    Article  Google Scholar 

  51. A Azarniya, SM Safavi, S Sovizi, A Azarniya, B Chen, RH MadaahHosseini, S Ramakrishna: Metals (Basel), 2017, vol. 7, p. 384.

    Article  Google Scholar 

  52. S. Dong, J. Zhou, D. Hui, Y. Wang, and S. Zhang: Compos. Part A Appl. Sci. Manuf., 2015, vol. 68, pp. 356–64.

    Article  Google Scholar 

  53. Y. Liu, J. Zhou, and D. Hui: Compos. Part B Eng., 2012, vol. 43, pp. 249–54.

    Article  Google Scholar 

  54. L. Ceschini, A. Dahle, M. Gupta, A.E.W. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, and S. Toschi: Aluminum and Magnesium Metal Matrix Nanocomposites, Springer, Singapore, 2017, pp.2–3.

    Book  Google Scholar 

  55. L. Blaz, P. Lobry, M. Zygmunt-Kiper, J. Koziel, G. Wloch, and S. Dymek: J. Alloys Compd., 2015, vol. 619, pp. 652–8.

    Article  Google Scholar 

  56. P.-C. Ma, N.A. Siddiqui, G. Marom, and J.-K. Kim: Compos. Part A Appl. Sci. Manuf., 2010, vol. 41, pp. 1345–67.

    Article  Google Scholar 

  57. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma: Compos. Part A Appl. Sci. Manuf., 2017, vol. 94, pp. 189–98.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from the National Key Research and Development Program of China (Nos. 2016YFB1200506, 2016YFE0130200, 2017YFB1201105), the Natural Science Foundation of China (Nos. 51671130, 51771110, 51771111, 51871149), the Ministry of Education of China (No. B16032), Aeronautical Science Foundation of China (2016ZF57011, 2017ZF57023), and Shanghai Science & Technology Committee (Nos. 15JC1402100, 17ZR1441500). Dr. C. Yuan thanks the project funded by the National Postdoctoral Program for Innovative Talents (BX201700148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Yuan or Zhanqiu Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 2, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Xu, R., Yuan, C. et al. Strain Rate Sensitivity and Deformation Mechanism of Carbon Nanotubes Reinforced Aluminum Composites. Metall Mater Trans A 50, 3544–3554 (2019). https://doi.org/10.1007/s11661-019-05284-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05284-z

Navigation