Skip to main content
Log in

Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Gene CA_C0816 codes for a serine hydrolase protein from Clostridium acetobutylicum (ATCC 824) a member of hormone-sensitive lipase of lipolytic family IV. This gene was overexpressed in E. coli strain BL21and purified using Ni2+–NTA affinity chromatography. Size exclusion chromatography revealed that the protein is a dimer in solution. Optimum pH and temperature for recombinant Clostridium acetobutylicum esterase (Ca-Est) were found to be 7.0 and 60 °C, respectively. This enzyme exhibited high preference for p-nitrophenyl butyrate. KM and kcat/KM of the enzyme were 24.90 µM and 25.13 s−1 µM−1, respectively. Sequence analysis of Ca-Est predicts the presence of catalytic amino acids Ser 89, His 224, and Glu 196, presence of novel GYSMG conserved sequence (instead of GDSAG and GTSAG motif), and undescribed variation of HGSG motif. Site-directed mutagenesis confirmed that Ser 89 and His 224 play a major role in catalysis. This study reports that Ca-Est is hormone-sensitive lipase with novel GYSMG pentapeptide motif at a catalytic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tao W, Shengxue F, Duobin M et al (2013) Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. J Mol Catal B Enzym 85–86:23–30. https://doi.org/10.1016/j.molcatb.2012.08.006

    Article  CAS  Google Scholar 

  2. Javed S, Azeem F, Hussain S et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

    Article  PubMed  CAS  Google Scholar 

  3. Chen C-C, Chi Z, Liu G-L et al (2017) Production, purification, characterization and gene cloning of an esterase produced by Aureobasidium melanogenum HN6.2. Process Biochem 53:69–79. https://doi.org/10.1016/j.procbio.2016.12.006

    Article  CAS  Google Scholar 

  4. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183

    Article  CAS  Google Scholar 

  5. Casas-Godoy L, Duquesne S, Bordes F et al (2012) Lipases: an overview. In: Sandoval G (ed) Lipases and phospholipases. Humana Press, Totowa, pp 3–30

    Chapter  Google Scholar 

  6. Jayanath G, Mohandas SP, Kachiprath B et al (2018) A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: recombinant expression and characterization. Int J Biol Macromol 119:393–401. https://doi.org/10.1016/j.ijbiomac.2018.06.057

    Article  PubMed  CAS  Google Scholar 

  7. Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63:179–192. https://doi.org/10.1139/cjm-2016-0447

    Article  PubMed  CAS  Google Scholar 

  8. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech. https://doi.org/10.1007/s13205-016-0485-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sarmah N, Revathi D, Sheelu G et al (2018) Recent advances on sources and industrial applications of lipases: biotechnol. Prog., 2017, Vol. 00, No. 00. Biotechnol Prog 34:5–28. https://doi.org/10.1002/btpr.2581

    Article  PubMed  CAS  Google Scholar 

  10. Ferrer M, Bargiela R, Martínez-Martínez M et al (2015) Biodiversity for biocatalysis: a review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes. Biocatal Biotransform 33:235–249. https://doi.org/10.3109/10242422.2016.1151416

    Article  CAS  Google Scholar 

  11. Navvabi A, Razzaghi M, Fernandes P et al (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70. https://doi.org/10.1016/j.procbio.2018.04.018

    Article  CAS  Google Scholar 

  12. Kovacic F, Babic N, Krauss U, Jaeger K-E (2019) Classification of lipolytic enzymes from bacteria. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Springer International Publishing, Cham, pp 1–35

    Google Scholar 

  13. Lenfant N, Hotelier T, Velluet E et al (2013) ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429. https://doi.org/10.1093/nar/gks1154

    Article  PubMed  CAS  Google Scholar 

  14. Hotelier T (2004) ESTHER, the database of the/-hydrolase fold superfamily of proteins. Nucleic Acids Res 32:145D–147D. https://doi.org/10.1093/nar/gkh141

    Article  CAS  Google Scholar 

  15. Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ (2011) The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 477:1–11. https://doi.org/10.1016/j.gene.2011.01.007

    Article  PubMed  CAS  Google Scholar 

  16. Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50:14–27. https://doi.org/10.1016/j.plipres.2010.10.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Langin D, Laurell H, Holst LS et al (1993) Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci USA 90:4897–4901

    Article  CAS  Google Scholar 

  18. Kim TD (2017) Bacterial hormone-sensitive lipases (bHSLs): emerging enzymes for biotechnological applications. J Microbiol Biotechnol 27:1907–1915. https://doi.org/10.4014/jmb.1708.08004

    Article  PubMed  CAS  Google Scholar 

  19. Osterlund T (2001) Structure-function relationships of hormone-sensitive lipase. Eur J Biochem 268:1899–1907

    Article  CAS  Google Scholar 

  20. Østerlund T, Contreras JA, Holm C (1997) Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase: apparent residues of the catalytic triad. FEBS Lett 403:259–262. https://doi.org/10.1016/S0014-5793(97)00063-X

    Article  PubMed  Google Scholar 

  21. De Simone G, Galdiero S, Manco G et al (2000) A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase 1 1Edited by D. Rees. J Mol Biol 303:761–771. https://doi.org/10.1006/jmbi.2000.4195

    Article  PubMed  CAS  Google Scholar 

  22. Hemilä H, Koivula TT, Palva I (1994) Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochimica et Biophysica Acta (BBA) Lipids and Lipid Metabolism 1210:249–253. https://doi.org/10.1016/0005-2760(94)90129-5

    Article  Google Scholar 

  23. Noby N, Saeed H, Embaby AM et al (2018) Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: a novel member of family IV. Int J Biol Macromol 120:1247–1255. https://doi.org/10.1016/j.ijbiomac.2018.07.169

    Article  PubMed  CAS  Google Scholar 

  24. Li P-Y, Ji P, Li C-Y et al (2014) Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J Biol Chem 289:19031–19041. https://doi.org/10.1074/jbc.M114.574913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jeon JH, Lee HS, Kim JT et al (2012) Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl Microbiol Biotechnol 93:623–631. https://doi.org/10.1007/s00253-011-3433-x

    Article  PubMed  CAS  Google Scholar 

  26. Kim B, Yoo W, Le Huong Luu LT et al (2019) Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch Biochem Biophys 663:132–142. https://doi.org/10.1016/j.abb.2019.01.010

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Xu H, Yan Q et al (2013) Biochemical characterization of a first fungal esterase from rhizomucor miehei showing high efficiency of ester synthesis. PLoS One 8:e77856. https://doi.org/10.1371/journal.pone.0077856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Manco G, Giosuè E, D’Auria S et al (2000) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-Sensitive Lipase subfamily from the Archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373:182–192. https://doi.org/10.1006/abbi.1999.1497

    Article  PubMed  CAS  Google Scholar 

  29. Li C, Li Q, Zhang Y et al (2017) Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiol Res 196:7–16. https://doi.org/10.1016/j.micres.2016.12.005

    Article  PubMed  CAS  Google Scholar 

  30. Zarafeta D, Moschidi D, Ladoukakis E et al (2016) Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Sci Rep. https://doi.org/10.1038/srep38886

    Article  PubMed  PubMed Central  Google Scholar 

  31. Virk AP (2011) A new esterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J Microbiol Biotechnol 21:667–674. https://doi.org/10.4014/jmb.1103.03008

    Article  PubMed  CAS  Google Scholar 

  32. Sánchez-Carbente MDR, Batista-García RA, Sánchez-Reyes A et al (2017) The first description of a hormone-sensitive lipase from a basidiomycete: structural insights and biochemical characterization revealed Bjerkandera adusta Ba EstB as a novel esterase. MicrobiologyOpen 6:e00463. https://doi.org/10.1002/mbo3.463

    Article  PubMed Central  CAS  Google Scholar 

  33. Alvarez Y, Esteban-Torres M, Cortés-Cabrera Á et al (2014) Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the αβ hydrolase superfamily of enzymes. PLoS One 9:e92257. https://doi.org/10.1371/journal.pone.0092257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Emtenani S, Asoodeh A, Emtenani S (2013) Molecular cloning of a thermo-alkaliphilic lipase from Bacillus subtilis DR8806: expression and biochemical characterization. Process Biochem 48:1679–1685. https://doi.org/10.1016/j.procbio.2013.08.016

    Article  CAS  Google Scholar 

  35. Choi Y-H, Lee Y-N, Park Y-J et al (2016) Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling. BMB Rep 49:349–354. https://doi.org/10.5483/BMBRep.2016.49.6.077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee J, Jang Y-S, Choi SJ et al (2012) Metabolic engineering of clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78:1416–1423. https://doi.org/10.1128/AEM.06382-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schwarz KM, Kuit W, Grimmler C et al (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—cellular behavior in adaptation to n-butanol. J Biotechnol 161:366–377. https://doi.org/10.1016/j.jbiotec.2012.03.018

    Article  PubMed  CAS  Google Scholar 

  38. Rehdorf J, Behrens GA, Nguyen G-S et al (2012) Pseudomonas putida esterase contains a GGG(A)X-motif confering activity for the kinetic resolution of tertiary alcohols. Appl Microbiol Biotechnol 93:1119–1126. https://doi.org/10.1007/s00253-011-3464-3

    Article  PubMed  CAS  Google Scholar 

  39. Palm GJ, Fernández-Álvaro E, Bogdanović X et al (2011) The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl Microbiol Biotechnol 91:1061–1072. https://doi.org/10.1007/s00253-011-3337-9

    Article  PubMed  CAS  Google Scholar 

  40. Mandrich L, Merone L, Pezzullo M et al (2005) Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J Mol Biol 345:501–512. https://doi.org/10.1016/j.jmb.2004.10.035

    Article  PubMed  CAS  Google Scholar 

  41. Bassegoda A, Fillat A, Pastor FIJ, Diaz P (2013) Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)X-oxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Appl Microbiol Biotechnol 97:8559–8568. https://doi.org/10.1007/s00253-012-4676-x

    Article  PubMed  CAS  Google Scholar 

  42. Byun J-S, Rhee J-K, Kim N et al (2007) Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct Biol 7:47. https://doi.org/10.1186/1472-6807-7-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De Simone G, Menchise V, Manco G et al (2001) The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus 1 1Edited by R. Huber. J Mol Biol 314:507–518. https://doi.org/10.1006/jmbi.2001.5152

    Article  PubMed  CAS  Google Scholar 

  44. Huo Y-Y, Jian S-L, Cheng H et al (2018) Two novel deep-sea sediment metagenome-derived esterases: residue 199 is the determinant of substrate specificity and preference. Microb Cell Fact. https://doi.org/10.1186/s12934-018-0864-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV et al (2016) Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 92:fiw046. https://doi.org/10.1093/femsec/fiw046

    Article  PubMed  CAS  Google Scholar 

  46. Benavente R, Esteban-Torres M, Acebrón I et al (2013) Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1. FEBS J 280:6658–6671. https://doi.org/10.1111/febs.12569

    Article  PubMed  CAS  Google Scholar 

  47. Neves Petersen MT, Fojan P, Petersen SB (2001) How do lipases and esterases work: the electrostatic contribution. J Biotechnol 85:115–147. https://doi.org/10.1016/S0168-1656(00)00360-6

    Article  PubMed  CAS  Google Scholar 

  48. Declerck N, Machius M, Wiegand G et al (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J Mol Biol 301:1041–1057. https://doi.org/10.1006/jmbi.2000.4025

    Article  PubMed  CAS  Google Scholar 

  49. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x

    Article  PubMed  CAS  Google Scholar 

  50. Ghati A, Paul G (2015) Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from ‘Bakreshwar’ hot spring, India. Process Biochem 50:771–781. https://doi.org/10.1016/j.procbio.2015.01.026

    Article  CAS  Google Scholar 

  51. Yang S, Qin Z, Duan X et al (2015) Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei. J Lipid Res 56:1616–1624. https://doi.org/10.1194/jlr.M060673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sayer C, Finnigan W, Isupov MN et al (2016) Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site. Sci Rep. https://doi.org/10.1038/srep25542

    Article  PubMed  PubMed Central  Google Scholar 

  53. Holm C, Davis RC, Osterlund T et al (1994) Identification of the active site serine of hormone-sensitive lipase by site-directed mutagenesis. FEBS Lett 344:234–238

    Article  CAS  Google Scholar 

  54. Lee CW, Kwon S, Park S-H et al (2017) Crystal structure and functional characterization of an esterase (EaEST) from Exiguobacterium antarcticum. PLoS One 12:e0169540. https://doi.org/10.1371/journal.pone.0169540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioprocess Eng 17:722–728. https://doi.org/10.1007/s12257-012-0092-4

    Article  CAS  Google Scholar 

  56. Alex D, Shainu A, Pandey A, Sukumaran RK (2014) Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165. Enzyme Res 2014:1–10. https://doi.org/10.1155/2014/494682

    Article  CAS  Google Scholar 

  57. Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. In: Sandoval G (ed) Lipases and phospholipases. Humana Press, Totowa, pp 471–483

    Chapter  Google Scholar 

  58. Sivaramakrishnan R, Muthukumar K (2012) Isolation of thermo-stable and solvent-tolerant bacillus sp. lipase for the production of biodiesel. Appl Biochem Biotechnol 166:1095–1111. https://doi.org/10.1007/s12010-011-9497-3

    Article  PubMed  CAS  Google Scholar 

  59. Delorme V, Dhouib R, Canaan S et al (2011) Effects of surfactants on lipase structure, activity, and inhibition. Pharm Res 28:1831–1842. https://doi.org/10.1007/s11095-010-0362-9

    Article  PubMed  CAS  Google Scholar 

  60. Neugebauer JM (1990) Detergents: an overview. Meth Enzymol 182:239–253

    Article  CAS  Google Scholar 

  61. Legler PM, Leary DH, Hervey WJ, Millard CB (2012) A role for His-160 in peroxide inhibition of S. cerevisiae S-formylglutathione hydrolase: evidence for an oxidation sensitive motif. Arch Biochem Biophys 528:7–20. https://doi.org/10.1016/j.abb.2012.08.001

    Article  PubMed  CAS  Google Scholar 

  62. Jeon JH, Kim J-T, Kang SG et al (2009) Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar Biotechnol 11:307–316. https://doi.org/10.1007/s10126-008-9145-2

    Article  PubMed  CAS  Google Scholar 

  63. Asoodeh A, Ghorani Azam A, Zardini H (2014) Biochemical characterization of a novel thermophilic esterase isolated from Shewanella sp F88. J Sci Repub Iran 25(1):5–12

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge IIT Madras for the facilities. Author N. Vijaya Lakshmi acknowledges AICTE-QIP and JNTUA College of Engineering Pulivendula.

Funding

The researcher did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any one of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaroor, V., Gummadi, S.N. Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. J Ind Microbiol Biotechnol 47, 169–181 (2020). https://doi.org/10.1007/s10295-019-02253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02253-8

Keywords

Navigation