Skip to main content
Log in

Mechanical Behavior of PMMA/SiO2 Multilayer Nanocomposites: Experiments and Molecular Dynamics Simulation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA)/nano-silica (nano-SiO2) nanocom-posite film with 256 layers containing different amounts of nano-SiO2 was manufactured by a new type of micro-nano multilayer co-extrusion technology. The structure, morphology and mechanical properties of PMMA/nano-SiO2 nanocomposite films were investigated through Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and tensile test Besides, molecular dynamics simulation ^J^ was adopted to study the dispersion and content effect on mechanical properties of PMMA/nano-SiO2 nanocomposite film. It is demonstrated that the tensile strength and the elongation at break of the composites improved with increasing nano-SiO2 content from 0 to 5 wt%, which was in good agreement with the Molecular Dynamics simulation. And the nanofiller dispersion in the multilayer nanocomposite film was better than that in the single-layer film with equivalent thickness under the effect of torsion lamination. Overall, the best performance was found for the nanocomposites of PMMA with nano-SiO2 content of 3.5 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pavlidou and C. D. Papaspyrides, Prog. Polym. Sci., 33, 1119 (2008).

    Article  CAS  Google Scholar 

  2. D. R. Paul and L. M. Robeson, Polymer, 49, 3187 (2008).

    Article  CAS  Google Scholar 

  3. X. Liu and Q. Wu, Macromol. Mater. Eng., 287, 180 (2015).

    Article  Google Scholar 

  4. M. Joshi, B. Adak, and B. S. Butola, Prog. Mater. Sci., 97, S0079642 518300549 (2018).

  5. O. Akin and F. Tihminlioglu, J. Polym. Environ., 26, 1121 (2018).

    Article  CAS  Google Scholar 

  6. M. C. Costache, D. Wang, M. J. Heidecker, E. Manias, C. A. Wilkie, Polym. Adv. Technol., 17, 272 (2010).

    Article  CAS  Google Scholar 

  7. C. Huang, Q. Xin, and R. Yang, Mater. Sci. Eng. R: Rep., 132, 1 (2018).

    Article  Google Scholar 

  8. J. Zhang, B. J. Wang, X. Ju, T. Liu, and T. D. Hu, Polymer, 42, 3697 (2001).

    Article  CAS  Google Scholar 

  9. P. Maji, R. B. Choudhary, and M. Majhi, J. Non-Crystalline Solids, 456, 40 (2017).

    Article  CAS  Google Scholar 

  10. Z. P. Fang, Y.-Z. Xu, and C.-W. Xu, Mater. Sci. Eng., 21, 279 (2003).

    CAS  Google Scholar 

  11. S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A. Wood, K. I. Winey, N. Clarke, and R. J. Composto, Soft Matter, 8, 6512 (2012).

    Article  CAS  Google Scholar 

  12. A. Kongsinlark, G. L. Rempel, and P. Prasassarakich, Chem. Eng. J., s193, 215 (2012).

    Article  CAS  Google Scholar 

  13. V. Tucureanu, A. Matei, I. Mihalache, M. Danila, M. Popescu, and B. Bita, J. Mater. Sci., 50, 1883 (2015).

    Article  CAS  Google Scholar 

  14. S. Hammani, A. Barhoum, and M. Bechelany, J. Mater. Sci., 53, 1911 (2017).

    Article  CAS  Google Scholar 

  15. A. K. Nikolaidis, D. S. Achilias, and G. P. Karayannidis, Ind. Eng. Chem. Res., 50, 571 (2011).

    Article  CAS  Google Scholar 

  16. X. H. And and W. J. Brittain, Macromolecules, 34, 3255 (2001).

    Article  CAS  Google Scholar 

  17. R. Palkovits, H. Althues, A. Rumplecker, B. Tesche, A. Dreier, U. Holle, G. Fink, C. H. Cheng, D. F. Shantz, and S. Kaskel, Langmuir, 21, 6048 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. J. F. Chen, Y. H. Wang, F. Guo, X. M. Wang, and C. Zheng, Ind. Eng. Chem. Res., 39, 948 (2000).

    Article  CAS  Google Scholar 

  19. J. Rieger and D. Horn, Angew. Chem. Int. Ed., 40, 4330 (2001).

    Article  Google Scholar 

  20. X. Li, J. F. Chen, and G. T. Chen, Acta. Mech. Sinica, 26, 266 (1994).

    Google Scholar 

  21. H. J. Yang, G. W. Chu, J. W. Zhang, Z. G. Shen, and J. F. Chen, Ind. Eng. Chem. Res., 44, 7730 (2005).

    Article  CAS  Google Scholar 

  22. B. Peng, H. Wu, W. Bao, S. Guo, Y. Chen, H. Huang, H. Chen, S.-Y. Lai, and J. Jow, Polym. J., 43, 91 (2010).

    Article  CAS  Google Scholar 

  23. T.-L. Wang, W.-S. Hwang, and M.-H. Yeh, J. Appl. Polym. Sci., 104, 4135 (2007).

    Article  CAS  Google Scholar 

  24. M. M. Gad, S. M. Fouda, F. A. Al-Harbi, R. Näpänkangas, and A. Raustia, Int. J. Nanomed., 12, 3801 (2017).

    Article  CAS  Google Scholar 

  25. G. Soni, S. Shrivastav, P. Soni, P. Kalotra, and Y. K. Vijay, Mater. Res. Express, 5, 015302 (2017).

    Article  CAS  Google Scholar 

  26. H.-C. Kuan, S.-L. Chiu, C.-H. Chen, C.-F. Kuan, and C.-L. Chiang, J. Appl. Polym. Sci., 113, 1959 (2009).

    Article  CAS  Google Scholar 

  27. F. Yang and G. L. Nelson, J. Appl. Polym. Sci., 91, 3844 (2010).

    Article  CAS  Google Scholar 

  28. Y. Zhang, S. Zhuang, X. Xu, and J. Hu, Opt. Mater., 36, 169 (2013).

    Article  CAS  Google Scholar 

  29. L. Jun, G. Yangyang, C. Dapeng, Z. Liqun, and G. Zhanhu, Langmuir, 27, 7926 (2011).

    Article  CAS  Google Scholar 

  30. S. F. Ferdous, M. F. Sarker, and A. Adnan, Polymer, 54, 2565 (2013).

    Article  CAS  Google Scholar 

  31. F. L. Zeng, Y. Sun, Y. Zhou, and Q. K. Li, Model. Simul. Mater. Sci. Eng., 19, 025005 (2011).

    Article  CAS  Google Scholar 

  32. M. Shi, Y. Zhang, L. Cheng, Z. Jiao, W. Yang, J. Tan, and Y. Ding, J. Phys. Chem. B, 120, 10018 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. T. V. M. Ndoro, E. Voyiatzis, A. Ghanbari, D. N. Theodorou, M. C. BoHm, and F. MuLler-Plathe, Macromolecules, 44, 2316 (2011).

    Article  CAS  Google Scholar 

  34. S. Yang, J. Choi, and M. Cho, ACS Appl Mater. Interfaces, 4, 4792 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. D. Davydov, E. Voyiatzis, G. Chatzigeorgiou, S. Liu, P. Steinmann, M. C. Böhm, and F. Müller-Plathe, Soft Materials, 12, S142 (2014).

    Article  Google Scholar 

  36. S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, Compos. Sci. Technol., 63, 1655 (2003).

    Article  CAS  Google Scholar 

  37. W. Haopeng, J. K. Keum, H. Anne, B. Eric, F. Benny, R. Artur, and G. Andrzej, Science, 323, 757 (2009).

    Article  CAS  Google Scholar 

  38. M. Mackey, D. E. Schuele, L. Zhu, L. Flandin, M. A. Wolak J. S. Shirk A. Hiltner, and E. Baer, Macromolecules, 45, 1954 (2012).

    Article  CAS  Google Scholar 

  39. T. Messin, N. Follain, A. Guinault, C. Sollogoub, V. Gaucher, N. Delpouve, and S. Marais, ACS Appl. Mater. Interfaces, 9, 29101 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. G. Miquelard-Garnier, A. Guinault, D. Fromonteil, S. Delalande, and C. Sollogoub, Polymer, 54, 4290 (2013).

    Article  CAS  Google Scholar 

  41. T. Alfey Jr. and W. J. Schrenk Science, 208, 813 (1980).

    Article  PubMed  Google Scholar 

  42. W. Yang, US Patent, US9079346B2 (2015).

  43. Z. Jiao, Y. Ding, C. Lin, W. Yang, and X. Cheng, J. Nanophotonics, 11, (2017).

  44. S. Plimpton, P. Crozier, and A. Thompson, J. Appl. Phys., 2, 4740 (2015).

    Google Scholar 

  45. B. Arash, H. S. Park, and T. Rabczuk Compos. Part B: Eng., 80, 92 (2015).

    Article  CAS  Google Scholar 

  46. B. Arash, H. S. Park, and T. Rabczuk Compos. Struct, 134, 981 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinong Shi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 2016YFB0302000), Guangdong Provincial Plan Projects of Science and Technology (Grant No. 2016B090915001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, X., Zhang, L., Shi, M. et al. Mechanical Behavior of PMMA/SiO2 Multilayer Nanocomposites: Experiments and Molecular Dynamics Simulation. Macromol. Res. 28, 266–274 (2020). https://doi.org/10.1007/s13233-020-8035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8035-y

Keywords

Navigation