Skip to main content
Log in

Theoretical Investigation on Effect of Boron on Improving the Hardness of Zincblende-Aluminium Nitride and Its Mechanical, Thermal and Thermoelectric Properties

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

In this paper, we present the outcome of ab-initio band structure study carried out on cubic phase ternary BxAl1−xN (x = 0, 0.125, 0.25, 0.5, 0.75, 0.875, 1.0) alloys in order to analyze the elastic coefficients thereby the structural, thermoelectric, electronic, thermal, mechanical, and optical properties of these alloys. With the aim of enhancing the hardness of aluminium nitride (19 GPa), the present study on the proposed combinations reveal that B0.75Al0.25N (40.5 GPa) and B0.875Al0.125N (49.5 GPa) alloys turn out to be superhard materials as their hardness surpasses 40 GPa. Further, B0.875Al0.125N alloy has been identified to serve as a good thermoelectric as it has a high Seebeck coefficient value of 240 µV/K and of melting temperature of 4282 K. Except for the binary compounds AlN and BN, all the other ternary alloys are predicted to be direct band gap materials. The density of states, band structure, charge density plot, various elastic moduli, Debye’s temperature, elastic wave velocity, dielectric constant, Seebeck’s coefficient and other properties of interest are discussed in this paper. The results are compared and found to agree very well with the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guemou, M., Abdiche, A., Riane, R., and Khenata, R., Ab initio study of the structural, electronic and optical properties of BAs and BN compounds and BNxAs1−x alloys, Physica B: Condensed Matter., 2014, vol. 436, pp. 33–40.

    Article  CAS  Google Scholar 

  2. Pentaleri, E. A., Gubanov, V. A., Boekema, C., and Fong, C. Y., First-principles band-structure calculations of p-and n-type substitutional impurities in zinc-blende aluminum nitride, Phys. Status Solidi B, 1997, vol. 203, pp. 149–168.

    Article  CAS  Google Scholar 

  3. Ustundag M., Aslan M., and Yalcin B. G. 2014 The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds, Comp. Mater. Sci., vol. 81, pp. 471–477

    Article  CAS  Google Scholar 

  4. Ivzhenko V. V., Fesenko I. P., Novikov N. V., Prikhna T. A., Popov V. A., and Sarnavskaya G. F., Study of the effect of the injection molding parameters on physico-mechanical properties of aluminum nitride-based ceramics, J. Superhard Mater., 2008, vol. 30, pp. 255–260.

    Article  Google Scholar 

  5. Saib, S., and Bouarissa, N., Ab initio study of boron nitride at high pressures, Diamond Relat. Mater., 2009, vol. 18, pp. 1200–1204.

    Article  CAS  Google Scholar 

  6. Huang, Z., Lü, T. Y., Wang, H. Q., Yang, S. W., and Zheng, J. C., Electronic and thermoelectric properties of the group-III nitrides (BN, AlN and GaN) atomic sheets under biaxial strains, Comp. Mater. Sci., 2017, vol. 130, pp. 232–241.

    Article  CAS  Google Scholar 

  7. Dai, Y., Wang, W., Gui C., Wen, X., Peng, Q., and Liu, S., A first-principles study of the mechanical properties of AlN with Raman verification, Comp. Mater. Sci., 2016, vol. 112, pp. 342–346.

    Article  CAS  Google Scholar 

  8. Liu, C., Hu, M., Luo, K., Cui, L., Yu, D., Zhao, Z., and He, J., Novel high-pressure phases of AlN: A first-principles study, Comp. Mater. Sci., 2016, vol. 117, pp. 496–501.

    Article  CAS  Google Scholar 

  9. Xiao, H.Y., Jiang X.D., Duan, G., Gao F., Zu, X.T., and Weber, W.J., First-principles calculations of pressure-induced phase transformation in AlN and GaN, Comp. Mater. Sci., 2010, vol. 48, pp. 768–772.

    Article  CAS  Google Scholar 

  10. Wang, A.J., Shang, S.L., Du, Y., Kong, Y., Zhang, L.J., Chen, L., Zhao, D.D., and Liu, Z.K., Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations, Comp. Mater. Sci., 2010, vol. 48, pp. 705–709.

    Article  CAS  Google Scholar 

  11. Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Tabata, A., Leite, J.R., Bechstedt, F., Frey, T., As, D.J., and Lischka, K., Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers, Physica E: Low-Dimensional Systems and Nanostructures, 2002, vol. 13, pp. 1086–1089.

    Article  CAS  Google Scholar 

  12. Zhang, M., and Li, X., Structural and electronic properties of wurtzite BxAl1− xN from first-principles calculations, Phys. Status Solidi B, 2017, vol. 254, art. 1600749.

  13. Kumar, S., Joshi, S., Joshi, B., and Auluck, S., Thermodynamical and electronic properties of BxAl1− xN alloys: A first principle study, J. Phys. Chem. Solids, 2015, vol. 86, pp. 101–107.

    Article  CAS  Google Scholar 

  14. Riane, R., Boussahla, Z., Matar, S.F., and Zaoui, A., Thermodynamical and electronic properties of zinc blende-type nitrides BxAl1 xN, Zeitschrift fur Naturforschung, 2008, vol. 63b, pp. 1069–1076

    Article  CAS  Google Scholar 

  15. Dridi, Z., Bouhafs, B., and Ruterana, P., First-principles study of cubic AlxGa1− xN alloys, Comp. Mater. Sci., 2005, vol. 33, pp. 136–140.

    Article  CAS  Google Scholar 

  16. Yang, R., Zhu, C., Wei, Q., and Du, Z., First-principles study of the properties of Pmn21-B1− xAlxN, Philos. Mag., 2017, vol. 97, pp. 3008–3026.

    Article  CAS  Google Scholar 

  17. Kityk, I.V., New approach for calculation of the GaxAl1−xN solid-state alloys, Comp. Mater. Sci., 2003, vol. 27, pp. 342–350.

    Article  CAS  Google Scholar 

  18. Zaoui, A., Certier, M., Ferhat, M., Pages, O., and Aourag, H., Lattice and electronics structure properties of (AlN)x(SiC)1−x semiconducting alloy, Phys. Status Solidi B, 1998, vol. 205, pp. 587–594.

    Article  CAS  Google Scholar 

  19. Ramirez-Montes, L., Lopez-Perez, W., Gonzalez-Garcia, A., and Gonzalez-Hernandez, R., Structural, optoelectronic, and thermodynamic properties of YxAl1 xN semiconducting alloys, J. Mater. Sci., 2016, vol. 51, pp. 2817–2829.

    Article  CAS  Google Scholar 

  20. Al-Douri, Y., Merabet, B., Abid, H., and Khenata, R., First-principles calculations to investigate optical properties of ByAlxIn1xyN alloys for optoelectronic devices, Superlat. Microstruct., 2012, vol. 51, pp. 404–411.

    Article  CAS  Google Scholar 

  21. Abdiche, A., Baghdad, R., Khenata, R., Riane, R., Al-Douri, Y., Guemou, M., and Bin-Omra, S., Structural and electronic properties of zinc blende BxAl1−xNyP1− y quaternary alloys via rst-principle calculations, Physica B: Condensed Matter., 2012, vol. 407, pp. 426–432.

    Article  CAS  Google Scholar 

  22. Zhang, R.F., Veprek, S., and Argon A.S., Mechanical properties and hardness of boron and boron-rich solids, J. Superhard Mater., 2011, vol. 33, pp. 409–420.

    Article  CAS  Google Scholar 

  23. Li, Q., Wang, H. and Ma, Y.M., Predicting new superhard phases, J. Superhard Mater., 2010, vol. 32, pp. 192–204.

    Article  Google Scholar 

  24. Letsoalo, T.E. and Lowther, J.E., Elastic and thermodynamic properties of potentially superhard carbon boride materials, J. Superhard Mater., 2012, vol. 34, pp. 28–36.

    Article  Google Scholar 

  25. Letsoalo, T.E. and Lowther, J.E., Computational investigation of elastic properties of bulk and defective ultrahard B6O, J. Superhard Mater., 2011, vol. 33, pp. 19–28.

    Article  Google Scholar 

  26. Ivanovskii, A.L., The search for novel superhard and incompressible materials on the basis of higher borides of s, p, d metals, J. Superhard Mater., 2011, vol. 33, pp. 73–87.

    Article  Google Scholar 

  27. Solozhenko, V. L. and Bushlya, V., Mechanical properties of superhard boron subnitride B13N2, J. Superhard Mater., 2017, vol. 39, pp. 422–6

    Article  Google Scholar 

  28. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J., Wien2k: An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna, Austria, 2001.

  29. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, vol. 140, pp. A1133–1138.

    Article  Google Scholar 

  30. Perdew, J.P., Burke, K., and Wang, Y., Genaralized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Rev. B., 1996, vol. 54, pp. 16533–16539.

    Article  CAS  Google Scholar 

  31. Murnaghan, F.D., The compressibility of media under extreme pressures, Proc. National Academy Sci., 1944, vol. 30, pp. 244–247.

    Article  CAS  Google Scholar 

  32. Jamal, M., Asadabadi, S.J., Ahmad, I., and Aliabad, R.H.A., Elastic constants of cubic crystals, Comp. Mater. Sci., 2014, vol. 95, pp. 592–599.

    Article  CAS  Google Scholar 

  33. Madsen, G. K. H. and Singh, D. J., BoltzTraP. A code for calculating band-structure dependent quantities, Comp. Phys. Commun., 2006, vol. 175, pp. 67–71.

    Article  CAS  Google Scholar 

  34. Djoudi, L., Lachebi, A., Merabet, B., and Abid, H., First-principles investigation of structural and electronic properties of the BxGa1− xN, BxAl1− xN, AlxGa1− xN and BxAlyGa1−x−yN compounds, Acta Physica Polonica A, 2012, vol. 122, pp. 748–753.

    Article  CAS  Google Scholar 

  35. Berrah, S., Boukortt, A., and Abid, H., Electronic and optical properties of zincblende AlN, GaN and InN compounds under pressure, Physica Scripta, 2007, vol. 75, pp. 414–418.

    Article  CAS  Google Scholar 

  36. Knittle, E., Wentzcovitch, R.M., Jeanloz, R., and Cohen, M.I., Experimental and theoretical equation of state of cubic boron nitride, Nature, 1989, vol. 337, pp. 349–352.

    Article  CAS  Google Scholar 

  37. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Eds., Mott, N. F., Bullard, E. C., and Wilkinson, D. H., Oxford University Press, 1954.

  38. Güler, E. and Güler, M., Elastic and mechanical properties of cubic diamond under pressure, Chinese J. Physics, 2015, vol. 53, art. 040807 (10).

  39. Tian, Y., Xu, B., and Zhao, Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Metals Hard Mater., 2012, vol. 33, pp. 93–106.

    Article  CAS  Google Scholar 

  40. Sundareswari, M., Ramasubramanian, S., and Rajagopalan, M., Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds—First Principles Study, Solid State Commun., 2010, vol. 150, pp. 2057–2060.

    Article  CAS  Google Scholar 

  41. Gilman, J.J., Cumberland, R.W., and Kaner, R.B., Design of hard crystals, Int. J. Refract. Metals Hard Mater., 2006, vol. 24, pp. 1–5.

    Article  CAS  Google Scholar 

  42. Daoud, S., Loucif, K., Bioud, N., Lebgaa, N., and Belagraa, L., Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide, Pramana, 2012, vol. 79, pp. 95–106.

    Article  CAS  Google Scholar 

  43. Deligoz, E., Colakoglu, K., and Ciftci, Y.O., Elastic, electronic, and vibrational properties of RhN compound, J. Mater. Sci., 2010, vol. 45, pp. 3720–3726.

    Article  CAS  Google Scholar 

  44. Dodd, S.P., Saunders, G.A., Cankurtaran, M., Lane, C., and Oee, S.K.T., Ultrasonic study of the elastic and nonlinear acoustic properties of ceramic aluminum nitride, J. Mater. Sci., 2001, vol. 6, pp. 723–729.

    Article  Google Scholar 

  45. Shaukat, S.M.A., FP-LAPW calculations of structural, electronic, and optical properties of alkali metal tellurides: M2Te [M: Li, Na, K and Rb], J. Mater. Sci., 2011, vol. 46, pp. 1027–1037.

    Article  CAS  Google Scholar 

  46. Krishnaveni, S. and Sundareswari, M., Band gap engineering in ruthenium-based Heusler alloys for thermoelectric applications, Int. J. Energy Research., 2018, vol. 42, pp. 764–775.

    Article  CAS  Google Scholar 

  47. Sztein, A., Haberstroh, J., Bowers, J.E., Denbaars, S.P., and Nakamura, S., Calculated thermoelectric properties of InxGa1− xN, InxAl1− xN, and AlxGa1− xN, J. Appl. Phys, 2013, vol. 113, art. 183707 (11).

  48. Reshak, A.H., Thermoelectric properties of highly-mismatched alloys of GaNxAs1x from first- to second-principles methods: energy conversion, RSC Advances, 2016, vol. 6, pp. 72286–77294.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the DST-FIST, India for funding this project through reference number SR/FST/PSI-193/2014 dt 23rd July, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sundareswari.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, E., Sundareswari, M., Krishnaveni, S. et al. Theoretical Investigation on Effect of Boron on Improving the Hardness of Zincblende-Aluminium Nitride and Its Mechanical, Thermal and Thermoelectric Properties. J. Superhard Mater. 41, 321–333 (2019). https://doi.org/10.3103/S1063457619050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619050046

Keywords

Navigation