Skip to main content
Log in

Effect of the Method of Production of Reduced Graphene Oxide on its Catalytic Activity in the Hydrogenation of Ethylene

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A Correction to this article was published on 01 November 2019

This article has been updated

The catalytic properties of N-doped hydrazine-reduced graphene oxide (N-RGO) and thermally reduced graphene oxide (TRGO) in the hydrogenation of ethylene by molecular hydrogen were studied. Samples of the TRGO and N-RGO were characterized by transmission and scanning electron microscopy, X-ray diffraction, and Raman and X-ray photoelectron spectroscopy. It was shown that decrease of the oxygen content in the reduced graphene oxide increases its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Change history

  • 11 December 2019

    Issue originally published online with incorrect cover date. It has been corrected.

References

  1. S. Navalon, A. Dhakshinamoorthy, M. Alvaro, et al., Chem. Soc. Rev., 46, 4501-4529 (2017).

    Article  CAS  Google Scholar 

  2. A. T. Murray and Y. Surendranath, ACS Catal., 75, 3307-3312 (2017).

    Article  Google Scholar 

  3. F. Yang, C. Chi, C. Wang, et al., Green Chem., 18, 4254-4262 (2016).

    Article  CAS  Google Scholar 

  4. S. Wu, G. Wen, R. Schlögl, and D. S. Su, Phys. Chem. Chem. Phys., 17, 1567-1571 (2015).

    Article  CAS  Google Scholar 

  5. R. Gao, L. Pan, J. Lu, et al., ChemCatChem., 9, 4287-4294 (2019).

    Article  Google Scholar 

  6. J. Wu, C. Wen, X. Zou, et al., ACS Catal., 77, 4497-4503 (2017).

    Article  Google Scholar 

  7. P. Sazama, J. Pastvova, C. Rizescu, et al., ACS Catal., 83, 1779-1789 (2018).

    Article  Google Scholar 

  8. R. Liu, F. Li, C. Chen, et al., Catal. Sci. Technol., 7, 1217-1226 (2017).

    Article  CAS  Google Scholar 

  9. A. A. Abakumov, I. B. Bychko, A. S. Nikolenko, and P. E. Strizhak, Teor. Éksp. Khim., 54, No. 4, 201-207 (2018). [Theor. Exp. Chem., 54, No. 4, 218-224 (2018) (English translation).]

  10. A. Primo, F. Neatu, M. Florea, et al., Nat. Commun., 5, 5291 (2014).

    Article  CAS  Google Scholar 

  11. R. Ciriminna, V. Pandarus, F. Be, and M. Pagliar, Org. Process Res. Dev., 18, 1110-1115 (2014).

    Article  CAS  Google Scholar 

  12. H. Miyamoto, C. Sakumoto, E. Takekoshi, and Y. Maeda, Org. Process Res. Dev., 19, 1054-1061 (2015).

    Article  CAS  Google Scholar 

  13. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACSNano., 4, 4806-4814 (2010).

    CAS  Google Scholar 

  14. L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electr. Spectr. Rel. Phenom., 195, 145-154 (2014).

    Article  CAS  Google Scholar 

  15. S. Eigle, C. Dotzer, and A. Hirsch, Carbon, 50, 3666-3673 (2012).

    Article  Google Scholar 

  16. G. R. Bigras, X. Glad, R. Martel, et al., Plasma Sources Sci. Technol., 27, 124004 (2018).

    Article  CAS  Google Scholar 

  17. K. Singh, P. K. Iyer, and P. K. Giri, J. Appl. Phys., 111, 064304 (2012).

    Article  Google Scholar 

  18. G. Sastre, A. Forneli, V. Almasan, et al., Appl. Catal. A, 547, 52-59 (2017).

    Article  CAS  Google Scholar 

  19. A. Ariharan, B. Viswanathan, and V. Nandhakumar, Graphene, 6, 41-60 (2019).

    Article  Google Scholar 

  20. S. Letardi, M. Celino, F. Cleri, and V. Rosato, Surf. Sci., 496, 33-38 (2002).

    Article  CAS  Google Scholar 

  21. H. Takagi, H. Hatori, Y. Yamada, et al., J. Alloys Compd., 385, 257-263 (2004).

    Article  CAS  Google Scholar 

Download references

The work was completed with partial financial support from target comprehensive programs of fundamental researches at the National Academy of Sciences of Ukraine “Fundamental problems in the creation of new nanomaterials and nanotechnologies” and “New functional substances and materials of chemical production.”

The authors express their gratitude to Prof. D. Tang for assistance in the implementation performing of the investigations by TEM and SEM and to A. Selishchev for assistance in the XPS investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bychko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 4, pp. 248-253, July-August, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychko, I.B., Abakumov, A.A. & Strizhak, P.E. Effect of the Method of Production of Reduced Graphene Oxide on its Catalytic Activity in the Hydrogenation of Ethylene. Theor Exp Chem 55, 274–279 (2019). https://doi.org/10.1007/s11237-019-09619-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09619-0

Key words

Navigation