Skip to main content
Log in

Scale-Free Percolation in Continuum Space

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice \({\mathbb Z}^d\), \(d\ge 1\), because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on \({\mathbb R}^d\): Particles are generated by a homogeneous marked Poisson point process on \({\mathbb R}^d\), and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amini, H., Cont, R., Minca, A.: Stress testing the resilience of financial networks. Int. J. Theor. Appl. Finance (2012). https://doi.org/10.1142/S0219024911006504

  2. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226(3), 531–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, N.: A Lower Bound for the Chemical Distance in Sparse Long-Range Percolation Models. ArXiv Mathematics e-prints (2004). arXiv:math/0409021

  5. Berger, N.: Transience, Recurrence and Critical Behavior for Long-Range Percolation. ArXiv e-prints (2014). arXiv:math/0110296v3

  6. Biskup, M.: On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32(4), 2938–2977 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  8. Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking systems. In: Fouque, J.P., Langsam, J.A. (eds.) Handbook on Systemic Risk. Cambridge University Press, New York (2013)

  9. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer Series in Statistics. Springer, New York (1988)

    MATH  Google Scholar 

  10. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deprez, P., Hazra, R.S., Wüthrich, M.V.: Inhomogeneous long-range percolation for real-life network modeling. Risks 3(1), 1–23 (2015)

    Article  Google Scholar 

  12. Durrett, R.: Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  13. Franceschetti, M., Meester, R.: Random Networks for Communication. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2007). (From statistical physics to information systems)

    MATH  Google Scholar 

  14. Gilbert, E.N.: Random plane networks. J. Soc. Ind. Appl. Math. 9, 533–543 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimmett, G.R.: Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  16. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meester, R., Roy, R.: Continuum Percolation, Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  18. Newman, C.M., Schulman, L.S.: One-dimensional \(1/\vert j-i\vert ^s\) percolation models: the existence of a transition for \(s\le 2\). Commun. Math. Phys. 104(4), 547–571 (1986)

    Article  MATH  Google Scholar 

  19. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99(suppl 1), 2566–2572 (2002)

    Article  MATH  Google Scholar 

  20. Penrose, M.D.: On a continuum percolation model. Adv. Appl. Probab. 23(3), 536–556 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schulman, L.S.: Long range percolation in one dimension. J. Phys. A 16(17), L639–L641 (1983)

    Article  MathSciNet  Google Scholar 

  22. van de Brug, T., Meester, R.: On central limit theorems in the random connection model. Physica A 332(1–4), 263–278 (2004)

    Article  MathSciNet  Google Scholar 

  23. Watts, D.J.: Six Degrees. W. W. Norton & Co. Inc., New York (2003). (The science of a connected age)

    Google Scholar 

  24. Willmot, G., Lin, X.: Lundberg Approximations for Compound Distributions with Insurance Applications. Lecture Notes in Statistics. Springer, New York (2012)

    Google Scholar 

  25. Zhang, Z.Q., Pu, F.C., Li, B.Z.: Long-range percolation in one dimension. J. Phys. A 16(3), L85–L89 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Deprez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deprez, P., Wüthrich, M.V. Scale-Free Percolation in Continuum Space. Commun. Math. Stat. 7, 269–308 (2019). https://doi.org/10.1007/s40304-018-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-018-0142-0

Keywords

Mathematics Subject Classification

Navigation