Skip to main content
Log in

Bahadur intercept with applications to one-sided testing

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we propose Bahadur intercept for measuring the Bahadur deficiency of two test procedures that have the same Bahadur slope. We illustrate our results in an example of testing a one-sided hypothesis in which the comparison of Bahadur intercepts of one-sided and two-sided tests reveals an important explanation for the test deficiency. We also show that the Bahadur deficiency coincides with the Pitman deficiency under additional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See, e.g., Andrews (1998), Romano et al. (2010) and Lu (2016) for discussions of other tests of one-sided hypotheses under the alternatives and e.g., Chernozhukov et al. (2007), Rosen (2008), Andrews and Guggenberger (2010), Bugni (2010), Linton et al. (2010), Hansen et al. (2011), Andrews and Barwick (2012), Lee et al. (2013) and Romano et al. (2014) for discussions of tests of one-sided hypotheses under the null.

References

  • Amengual D, Sentana E (2010) A comparison of mean-variance efficiency tests. J Econom 154:16–34

    Article  MathSciNet  Google Scholar 

  • Andrews DWK (1996) Admissibility of the likelihood ratio test when the parameter space is restricted under the alternative. Econometrica 64:705–718

    Article  MathSciNet  Google Scholar 

  • Andrews DWK (1998) Hypothesis testing with a restricted parameter space. J Econom 84:155–199

    Article  MathSciNet  Google Scholar 

  • Andrews DWK, Barwick PJ (2012) Inference for parameters defined by moment inequalities: a recommended moment selection procedure. Econometrica 80:2805–2826

    Article  MathSciNet  Google Scholar 

  • Andrews DWK, Guggenberger P (2010) Asymptotic size and a problem with subsampling and with the \(m\) out of \(n\) bootstrap. Econom Theory 26:426–468

    Article  MathSciNet  Google Scholar 

  • Bahadur RR (1960) Stochastic comparison of tests. Ann Math Stat 31:276–295

    Article  MathSciNet  Google Scholar 

  • Bartholomew DJ (1961) A test of homogeneity of means under restricted alternatives. J R Stat Soc Ser B Methodol 23:239–281

    MathSciNet  MATH  Google Scholar 

  • Bugni FA (2010) Bootstrap inference in partially identified models defined by moment inequalities: coverage of the identified set. Econometrica 78:735–753

    Article  MathSciNet  Google Scholar 

  • Canay IA (2010) EL inference for partially identified models: large deviations optimality and bootstrap validity. J Econom 156:408–425

    Article  MathSciNet  Google Scholar 

  • Canay IA, Otsu T (2012) Hodges-lehmann optimality for testing moment conditions. J Econom 171:45–53

    Article  MathSciNet  Google Scholar 

  • Chandra TK, Ghosh J (1978) Comparison of tests with same bahadur-efficiency. Sankhyā 40(3):253–277

    MathSciNet  MATH  Google Scholar 

  • Chen B, Hong Y (2012) Testing for smooth structural changes in time series models via nonparametric regression. Econometrica 80:1157–1183

    Article  MathSciNet  Google Scholar 

  • Chernozhukov V, Hong H, Tamer E (2007) Estimation and confidence regions for parameter sets in econometric models. Econometrica 75:1243–1284

    Article  MathSciNet  Google Scholar 

  • DasGupta A (2008) Asymptotic theory of statistics and probability. Springer, New York

    MATH  Google Scholar 

  • Demos A, Sentana E (1998) Testing for GARCH effects: a one-sided approach. J Econom 86:97–127

    Article  Google Scholar 

  • Francq C, Zakoian JM (2009) Testing the nullity of garch coefficients: correction of the standard tests and relative efficiency comparisons. J Am Stat Assoc 104:313–324

    Article  MathSciNet  Google Scholar 

  • Geweke J (1981) The approximate slopes of econometric tests. Econometrica, 1427–1442

  • Gleser LJ (1964) On a measure of test efficiency proposed by RR Bahadur. Ann Math Stat, 1537–1544

  • Gouriéroux C, Holly A, Monfort A (1982) Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters. Econometrica 50:63–80

    Article  MathSciNet  Google Scholar 

  • Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79:453–497

    Article  MathSciNet  Google Scholar 

  • Hodges JL, Lehmann EL (1970) Deficiency. Ann Math Stat 41:783–801

    Article  MathSciNet  Google Scholar 

  • Kallenberg WC (1981) Bahadur deficiency of likelihood ratio tests in exponential families. J Multivar Anal 11:506–531

    Article  MathSciNet  Google Scholar 

  • Kim D, Perron P (2009) Assessing the relative power of structural break tests using a framework based on the approximate bahadur slope. J Econom 149:26–51

    Article  MathSciNet  Google Scholar 

  • Kitamura Y (2001) Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 69:1661–1672

    Article  MathSciNet  Google Scholar 

  • Kitamura Y, Santos A, Shaikh AM (2012) On the asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 80:413–423

    Article  MathSciNet  Google Scholar 

  • Kudô A (1963) A multivariate analogue of the one-sided test. Biometrika 50:403–418

    Article  MathSciNet  Google Scholar 

  • Lee S, Song K, Whang YJ (2013) Testing functional inequalities. J Econom 172:14–32

    Article  MathSciNet  Google Scholar 

  • Linton O, Song K, Whang YJ (2010) An improved bootstrap test of stochastic dominance. J Econom 154:186–202

    Article  MathSciNet  Google Scholar 

  • Lu ZH (2016) Extended maxt tests of one-sided hypotheses. J Am Stat Assoc 111:423–437

    Article  MathSciNet  Google Scholar 

  • Majumder P, Mitra M (2017) A test for detecting Laplace order dominance and related Bahadur efficiency issues. Stat Pap

  • Otsu T (2010) On Bahadur efficiency of empirical likelihood. J Econom 157:248–256

    Article  MathSciNet  Google Scholar 

  • Romano JP, Shaikh AM, Wolf M (2010) Hypothesis testing in econometrics. Ann Rev Econom 2:75–104

    Article  Google Scholar 

  • Romano JP, Shaikh AM, Wolf M (2014) A practical two-step method for testing moment inequalities. Econometrica 82:1979–2002

    Article  MathSciNet  Google Scholar 

  • Rosen AM (2008) Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities. J Econom 146:107–117

    Article  MathSciNet  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical studies. Wiley, New York

    Book  Google Scholar 

  • Shapiro A (1985) Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 72:133–144

    Article  MathSciNet  Google Scholar 

  • Silvapulle MJ (1991) On limited dependent variable models: Maximum likelihood estimation and test of one-sided hypothesis. Econometric Theory 7:385–395

    Article  MathSciNet  Google Scholar 

  • Silvapulle MJ, Sen PK (2005) Constrained statistical inference: order, inequality, and shape restrictions. Wiley, New York

    MATH  Google Scholar 

  • Silvapulle MJ, Silvapulle P (1995) A score test against one-sided alternatives. J Am Stat Assoc 90:342–349

    Article  MathSciNet  Google Scholar 

  • Wieand HS (1976) A condition under which the pitman and bahadur approaches to efficiency coincide. Ann Stat, 1003–1011

  • Wolak FA (1989a) Local and global testing of linear and nonlinear inequality constraints in nonlinear econometric models. Econom Theory 5:1–35

    Article  MathSciNet  Google Scholar 

  • Wolak FA (1989b) Testing inequality constraints in linear econometric models. J Econom 41:205–235

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the valuable comments and suggestion from two anonymous referees. This research is supported by the Australian Research Council under the Project DP140103617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Hua Lu.

Appendix: Proofs

Appendix: Proofs

Proof of Theorem 1

For the sequence \(r=1,2,\ldots \) let \(\alpha _{r}\rightarrow 0\) as \(r\rightarrow \infty \). Let \(\theta \in \Theta -\Theta _{0}\). For a given \(\varepsilon >0\) it follows from Assumptions 1 and 3 that there exist \(r_{0}\) such that for \(r\ge r_{0}\)

$$\begin{aligned} \gamma (\alpha _{r})-\varepsilon \le K_{n_{r}}\le \gamma (\alpha _{r})+\varepsilon , \end{aligned}$$
(A. 1)

holds with the probability \(1-\delta (\varepsilon )\), where \(\delta (\varepsilon )\rightarrow 0\) as \(\varepsilon \rightarrow 0\). By Eq. (3) it follows that there exists \( r_{1}\) corresponding to the given \(\varepsilon \) and \(\delta (\varepsilon )\) such that for all \(r\ge r_{1}\ge r_{0}\)

$$\begin{aligned} d(\theta )-\varepsilon \le K_{n_{r}}-n_{r}c(\theta )\le d(\theta )+\varepsilon \end{aligned}$$
(A. 2)

holds with the probability \(1-\delta (\varepsilon )\). This in turn means that the probability \(1-\delta (\varepsilon )\) is guaranteed if the sample size suggested by Inequality (A. 2) is bounded as

$$\begin{aligned} \frac{K_{n_{r}}-d(\theta )-\varepsilon }{c(\theta )}\le n_{r}\le \frac{ K_{n_{r}}-d(\theta )+\varepsilon }{c(\theta )}. \end{aligned}$$
(A. 3)

It then follows from Inequalities (A. 1) and (A. 3) that

$$\begin{aligned} \frac{\gamma (\alpha _{r})-d(\theta )-2\varepsilon }{c(\theta )}\le n_{r}\le \frac{\gamma (\alpha _{r})-d(\theta )+2\varepsilon }{c(\theta )}. \end{aligned}$$

For the two tests indexed by i and j that have \(c_{i}(\theta )=c_{j}(\theta )=c(\theta )\) let

$$\begin{aligned} D_{j,i}^{B+}= & {} \sup \{n_{r,j}-n_{r,i}\} \\= & {} \frac{\gamma _{j}(\alpha _{r})-d_{j}(\theta )+2\varepsilon }{c(\theta )} -\frac{\gamma _{i}(\alpha _{r})-d_{i}(\theta )-2\varepsilon }{c(\theta )}. \end{aligned}$$

For the two tests to be equally successful in rejecting \(H_{0}\) they require \( \gamma _{i}(\alpha _{r})=\gamma _{j}(\alpha _{r})\), hence

$$\begin{aligned} D_{j,i}^{B+}=\frac{\Delta d_{i,j}(\theta )+4\varepsilon }{c(\theta )}. \end{aligned}$$

Similarly, we have

$$\begin{aligned} D_{j,i}^{B-}= & {} \inf \{n_{r,j}-n_{r,i}\} \\= & {} \frac{\gamma _{j}(\alpha _{r})-d_{j}(\theta )-2\varepsilon }{ c_{j}(\theta )}-\frac{\gamma _{i}(\alpha _{r})-d_{i}(\theta )+2\varepsilon }{c_{i}(\theta )} \\= & {} \frac{\Delta d_{i,j}(\theta )-4\varepsilon }{c(\theta )}. \end{aligned}$$

As \(\varepsilon \) can be arbitrarily small it follows that

$$\begin{aligned} D_{j,i}^{B}=\lim _{r\rightarrow \infty ,\alpha _{r}\rightarrow 0}D_{j,i}^{B+}=\lim _{r\rightarrow \infty ,\alpha _{r}\rightarrow 0}D_{j,i}^{B-}=\frac{\Delta d_{i,j}(\theta )}{c(\theta )}. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 2

For the sequence \(r=1,2,\ldots \) let \(\theta _{r}\rightarrow \theta _{0}\) as \( r\rightarrow \infty \). From Assumption 5 we can choose \(\delta >0\) and an integer \(r_{0}\) such that for \(r\ge r_{0}\) we have \(\delta \le \beta _{r}\le 1-\delta \), \(b(\theta _{r})\le 1\) and \(\theta _{r}\in \mathcal {N}(\theta _{0},\theta ^{*})\). Let \(x_{0}>2(A+1)^{1/2}\) such that F is strictly increasing on \((x_{0},\infty )\). Choose an integer \( r_{1}\ge r_{0}\) such that for \(r\ge r_{1}\) and \(n_{r}\in (A/b^{2}(\theta _{r}),A/b^{2}(\theta _{r})+1]\), the rejection region of the level \(\alpha \) test based \(T_{n}\) is contained in the interval \((2(A+1)^{1/2},\infty )\) which is a subset of \((2b(\theta _{r})n_{r}^{1/2},\infty )\) because

$$\begin{aligned} 2b(\theta _{r})n_{r}^{\frac{1}{2}}\le 2(A+b^{2}(\theta _{r}))^{\frac{1}{2} }\le 2(A+1)^{\frac{1}{2}}. \end{aligned}$$

That is, the power \(\beta _{r}\le \beta _{r_{1}}\) for \(r\ge r_{1}\). As \( K_{n}\) is the monotonic transformation of \(T_{n}\) we have \(K_{n_{r}}\le K_{n_{r_{1}}}\) for \(r\ge r_{1}\). Because the inequalities (A. 1) and (A. 2) hold as \(n_{r}\rightarrow \infty \) (\(r\rightarrow \infty \)). Then following the proof of Theorem 1 it easily leads to

$$\begin{aligned} D_{j,i}^{P}= & {} \lim _{r\rightarrow \infty ,\theta _{r}\rightarrow \theta _{0}}\inf \{n_{r,j}-n_{r,i}\} \\= & {} \lim _{r\rightarrow \infty ,\theta _{r}\rightarrow \theta _{0}}\sup \{n_{r,j}-n_{r,i}\} \\= & {} \frac{\Delta d_{i,j}(\theta )}{c(\theta )}. \end{aligned}$$

\(\square \)

Proof of Proposition 1

For the tests based on \(T_{n,3}\) and \(T_{n,4}\) Assumption 5 can be verified by following the discussions in Example 3 of Wieand (1976) while the other remaining assumptions can be verified easily.

For notational convenience let \(\pi (Q,m,\Sigma )=\pi _{m}\). Let the random variable appearing in the subscript of F be the cumulative distribution of that random variable; for example, \(F_{\chi _{m}^{2}}\) denotes the cumulative distribution of \(\chi _{m}^{2}\).

Because for \(x>0\) and \(0\le m<m^{\prime }\),

$$\begin{aligned} \Pr (\chi _{m}^{2}>x)<\Pr (\chi _{m^{\prime }}^{2}>x), \end{aligned}$$

we denote by \(\varrho (m)\) a strictly decreasing function of m such that for \(x\rightarrow \infty \)

$$\begin{aligned} 1-F_{\chi _{m}^{2}}(x)=\exp \left\{ -\frac{x}{2}(1+o(1))-\varrho (m)\right\} . \end{aligned}$$

It then follows that for \(x>0\), we have

$$\begin{aligned}&1-F_{\overline{\chi }^{2}}\left( x\right) \\&\quad =\sum _{m=1}^{k}\pi _{m}\{1-F_{\chi _{m}^{2}}\left( x\right) \} \\&\quad =\sum _{m=1}^{k}\pi _{m}\exp \left\{ -\frac{x}{2}\left( 1+o\left( 1\right) \right) -\varrho \left( m\right) \right\} \\&\quad =\sum _{m=1}^{k}\exp \left\{ -\frac{x}{2}\left( 1+o\left( 1\right) \right) -\varrho \left( m\right) +\log \pi _{m}\right\} \\&\quad =\exp \left( -\frac{x}{2}\right) \sum _{m=1}^{k}\exp \{-\varrho \left( m\right) +\log \pi _{m}\}+o\left( \exp \left( -\frac{x}{2}\right) \right) . \end{aligned}$$

Therefore,

$$\begin{aligned} -\log \{1-F_{\overline{\chi }^{2}}(x)\}=\frac{x}{2}-\log \left[ \sum _{m=1}^{k}\exp \{-\varrho (m)+\log \pi _{m}\}\right] +o(x). \end{aligned}$$

It follows that QLR tests based on \(T_{n,3}\) have the approximate Bahadur slope as

$$\begin{aligned} c_{3}(\theta )= & {} p\lim _{n\rightarrow \infty }-\frac{2}{n}\log \left[ 1-F_{ \overline{\chi }_{k}^{2}}\{T_{n,3}\}\right] \\= & {} p\lim _{n\rightarrow \infty }\frac{T_{n,3}}{n} \\= & {} \theta ^{\prime }\Sigma ^{-1}\theta . \end{aligned}$$

Similarly, for two-sided tests we have

$$\begin{aligned} -\log \{1-F_{\chi _{k}^{2}}(x)\}=\frac{x}{2}+\varrho (k)+o(x). \end{aligned}$$

and the approximate Bahadur slope based on \(T_{n,4}\) is

$$\begin{aligned} c_{4}(\theta )= & {} p\lim _{n\rightarrow \infty }-\frac{2}{n}\log [1-F_{\chi _{k}^{2}}\{T_{n,4}\}] \\= & {} p\lim _{n\rightarrow \infty }\frac{T_{n,4}}{n} \\= & {} \theta ^{\prime }\Sigma ^{-1}\theta . \end{aligned}$$

Having shown \(c_{3}(\theta )=c_{4}(\theta )\) we now show that

$$\begin{aligned} \Delta d_{3,4}(\theta )= & {} d_{3}(\theta )-d_{4}(\theta ) \\= & {} p\lim _{n\rightarrow \infty }\left\{ -2\log \left[ 1-F_{\overline{\chi } _{k}^{2}}\{T_{n,3}\}\right] +2\log \left[ 1-F_{\chi _{k}^{2}}\{T_{n,4}\}\right] \right\} \\= & {} p\lim _{n\rightarrow \infty }\left\langle T_{n,3}-2\log \left[ \sum _{m=1}^{k}\exp \{-\varrho (m)+\log \pi _{m}\}\right] -T_{n,4}-2\varrho (k)\right\rangle \\= & {} -2\log \left[ \sum _{m=1}^{k}\exp \{-\varrho (m)+\log \pi _{m}\}\right] -2\varrho (k), \end{aligned}$$

where the last line follows because of \(T_{n,3}=T_{n,4}+o_{p}(1)\). Because \( \sum _{m=0}^{k}\pi _{m}=1\) and \(0<\pi _{m}<1\), \(m\in \{1,\ldots ,k\}\), we have \( \sum _{m=1}^{k}\pi _{m}<1\). Together with that \(\varrho (m)\) is a strictly decreasing function of m it follows

$$\begin{aligned} \sum _{m=1}^{k}\exp \{-\varrho (m)+\log \pi _{m}\}< & {} \sum _{m=1}^{k}\exp \{-\varrho (k)+\log \pi _{m}\} \\= & {} \exp \{-\varrho (k)\}\sum _{m=1}^{k}\pi _{m} \\< & {} \exp \{-\varrho (k)\}. \end{aligned}$$

Therefore, it follows that \(0<\Delta d_{3,4}(\theta )<\infty \), so the deficiency result follows by applying Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ZH. Bahadur intercept with applications to one-sided testing. Stat Papers 61, 645–658 (2020). https://doi.org/10.1007/s00362-017-0955-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0955-z

Keywords

Navigation