Skip to main content
Log in

Cobalt imine–pyridine–carbonyl complex functionalized metal–organic frameworks as catalysts for alkene epoxidation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Aerobic epoxidation of alkene is a green and economical route to produce epoxides. For such reaction, transition metal complexes exhibit favorable catalytic activity. In this work, NH2-MIL-101, a stable metal–organic framework (MOF) material with large surface area and high pore volume, was functionalized with pyridine-2,6-dicarbaldehyde and Co(NO3)2, to realize the immobilization of Co(II) via imine–pyridine–carbonyl (N,N,O) tridentate ligands bonding to MOF skeleton. The modified materials were applied as heterogeneous catalysts for the aerobic epoxidation of cyclohexene at ambient temperature, and multiple factors were studied to explore their influences on catalytic effects. Under the optimal reaction conditions, satisfactory substrate conversion and epoxide selectivity were reached. In addition, this catalytic system is suitable for a variety of alkene substrates. Furthermore, recycle experiments and infrared spectroscopy characterization illustrated that the coordination surroundings of Co are altering smoothly during the reaction process, thus having an impact on the performance of catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sebastian J, Jinka KM, Jasra RV (2006) Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobalt (II)-exchanged zeolite X. J Catal 244(2):208–218

    Article  CAS  Google Scholar 

  2. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328(5975):224–228

    Article  CAS  Google Scholar 

  3. Nam W, Lim MH, Lee HJ, Kim C (2000) Evidence for the participation of two distinct reactive intermediates in iron (III) porphyrin complex-catalyzed epoxidation reactions. J Am Chem Soc 122(28):6641–6647

    Article  CAS  Google Scholar 

  4. Bhaumik A, Tatsumi T (2000) Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. J Catal 189(1):31–39

    Article  CAS  Google Scholar 

  5. Qiu Y, Yang C, Huo J, Liu Z (2016) Synthesis of Co-NC immobilized on carbon nanotubes for ethylbenzene oxidation. J Mol Catal A: Chem 424:276–282

    Article  CAS  Google Scholar 

  6. Xia Q-H, Ge H-Q, Ye C-P, Liu Z-M, Su K-X (2005) Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev 105(5):1603–1662

    Article  CAS  Google Scholar 

  7. Mas-Ballesté R, Que L (2007) Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant. J Am Chem Soc 129(51):15964–15972

    Article  Google Scholar 

  8. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105(6):2329–2364

    Article  CAS  Google Scholar 

  9. Mu M, Wang Y, Qin Y, Yan X, Li Y, Chen L (2017) Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl Mater Interfaces 9(27):22856–22863

    Article  CAS  Google Scholar 

  10. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135(32):11887–11894

    Article  CAS  Google Scholar 

  11. Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273:76–86

    Article  Google Scholar 

  12. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43(16):6011–6061

    Article  CAS  Google Scholar 

  13. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):2040–2042

    Article  Google Scholar 

  14. Kuwahara Y, Kango H, Yamashita H (2016) Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain Chem Eng 5(1):1141–1152

    Article  Google Scholar 

  15. Jiang J, Yaghi OM (2015) Brønsted acidity in metal–organic frameworks. Chem Rev 115(14):6966–6997

    Article  CAS  Google Scholar 

  16. Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3(9):1136–1141

    Article  CAS  Google Scholar 

  17. Wang Y, Zeng Y, Wu X, Mu M, Chen L (2018) A novel Pd-Ni bimetallic synergistic catalyst on ZIF-8 for Sonogashira coupling reaction. Mater Lett 220:321–324

    Article  CAS  Google Scholar 

  18. Pintado-Sierra M, Rasero-Almansa AM, Corma A, Iglesias M, Sánchez F (2013) Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J Catal 299:137–145

    Article  CAS  Google Scholar 

  19. Li B, Chrzanowski M, Zhang Y, Ma S (2016) Applications of metal-organic frameworks featuring multi-functional sites. Coord Chem Rev 307:106–129

    Article  CAS  Google Scholar 

  20. Ingleson MJ, Barrio JP, Guilbaud J-B, Khimyak YZ, Rosseinsky MJ (2008) Framework functionalisation triggers metal complex binding. Chem Commun 23:2680–2682

    Article  Google Scholar 

  21. Bhattacharjee S, Yang D-A, Ahn W-S (2011) A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of IRMOF-3 with a manganese (II) acetylacetonate complex. Chem Commun 47:3637–3639

    Article  CAS  Google Scholar 

  22. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  Google Scholar 

  23. Chen J, Li K, Chen L, Liu R, Huang X, Ye D (2014) Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem 16(5):2490–2499

    Article  CAS  Google Scholar 

  24. Luan Y, Qi Y, Gao H, Andriamitantsoa RS, Zheng N, Wang G (2015) A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. J Mater Chem A 3(33):17320–17331

    Article  CAS  Google Scholar 

  25. Jiang D, Keenan LL, Burrows AD, Edler KJ (2012) Synthesis and post-synthetic modification of MIL-101 (Cr)-NH 2 via a tandem diazotisation process. Chem Commun 48(99):12053–12055

    Article  CAS  Google Scholar 

  26. Koz G, Özdemir N, Astley D, Dinçer M, Astley ST (2010) Synthesis, spectroscopic and structural characterization of cobalt (II) complex with uracil-containing 2, 6-diformylpyridine ligand: theoretical studies on the ligand and pentagonal-bipyramidal [Co(L)(H2O)2]2+ and [Zn(L)(H2O)2]2+ cations. J Mol Struct 966(1):39–47

    Article  CAS  Google Scholar 

  27. Zhang Y-W, Li Z, Zhao Q, Zhou Y-L, Liu H-W, Zhang X-X (2014) A facilely synthesized amino-functionalized metal–organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun 50(78):11504–11506

    Article  CAS  Google Scholar 

  28. Li Z, Tang R, Liu G (2013) Immobilized into montmorillonite Mn(II) complexes of novel pyridine schiff-base ligands and their catalytic reactivity in epoxidation of cyclohexene with O2. Catal Lett 143(6):592–599

    Article  CAS  Google Scholar 

  29. Ross J (1953) Infrared spectra for analysis of aldehyde and ketone 2, 4-dinitrophenylhydrazones. Anal Chem 25(9):1288–1303

    Article  CAS  Google Scholar 

  30. Wang J, Yang M, Dong W, Jin Z, Tang J, Fan S, Lu Y, Wang G (2016) Co (II) complexes loaded into metal–organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins. Catal Sci Technol 6(1):161–168

    Article  Google Scholar 

  31. Golets M, Ajaikumar S, Mikkola J-P (2015) Catalytic upgrading of extractives to chemicals: monoterpenes to “EXICALS”. Chem Rev 115(9):3141–3169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21808161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowei Wang or Ligong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Wang, B., Li, J. et al. Cobalt imine–pyridine–carbonyl complex functionalized metal–organic frameworks as catalysts for alkene epoxidation. Transit Met Chem 44, 595–602 (2019). https://doi.org/10.1007/s11243-019-00319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00319-1

Navigation