Skip to main content
Log in

Enhanced catalytic performance on the thermal decomposition of TKX-50 by Fe3O4 nanoparticles highly dispersed on rGO

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fe3O4/reduced graphene oxide (Fe3O4/rGO) nanocomposite has been successfully fabricated using a modified interface solvothermal method and characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the preparation procedure, graphene oxide was reduced and ultrafine Fe3O4 nanoparticles (NPs) were uniformly loaded on reduced graphene oxide (rGO) carrier. Scanning electron microscope, transmission electron microscope images and Brunauer–Emmett–Teller specific surface area revealed that the aggregation of Fe3O4 NPs was greatly reduced by introducing rGO as a substrate. The average size of the Fe3O4 NPs anchored on the graphene sheets was 100 nm, which is much smaller than 1-μm bare Fe3O4. The DSC results showed that Fe3O4/rGO nanocomposite reduces the first decomposition temperature of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) by 44.9 °C and decreases the apparent activation energy of TKX-50 by 26.2 kJ mol−1, which exhibits higher catalytic performance than its individual components and their physical mixture (hybrid). Hence, Fe3O4/rGO nanocomposite can be a promising additive for insensitive solid propellants based on TKX-50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venugopalan S. Demystifying explosives-concepts in high energy materials. Amsterdam: Elsevier; 2015.

    Google Scholar 

  2. Song ZW, Yan QL, Li XJ, Qi XF, Liu M. Crystal transition of ε-CL-20 in different solvent. Chin J Energ Mater. 2010;18:648–53.

    CAS  Google Scholar 

  3. Golovina NI, Utenyshev AN, Bozhenko KV, Chukanov NV, Zakharov VV, Korsounskii BL. The energy parameters of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane polymorphs and their phase transitions. Russ J Phys Chem A. 2009;83:1153–9.

    CAS  Google Scholar 

  4. Fischer N, Fischer D, Klapoetke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    CAS  Google Scholar 

  5. Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenko AF, Nechaev MS, Lunin VV, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    CAS  Google Scholar 

  6. Bi FQ, Fu XL, Shao ZB, Fan XZ, Li JZ, Yu HJ. Calculation of energy characteristics of high energy monopropellant TKX-50. Chem Propell Polym Mater. 2013;5:70–3.

    Google Scholar 

  7. Wang XP, Luo YJ, Guo K, Lu Y. Energy characteristics computation of propellant containing 3,3′-Dinitro-4,4′-oxazafurazan. Chin J Energ Mater. 2009;17:79–82.

    CAS  Google Scholar 

  8. Klapötke TM, Witkowski TG, Wilk Z, Hadzik J. Determination of the initiating capability of detonators containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a base charge, by underwater explosion test. Prop Explos Pyrotech. 2016;41:92–7.

    Google Scholar 

  9. Lurnan JR, Wehrman B, Kuo KK, Yetter RA, Masoud NM, Manning TG, Harris LE, Bruck HA. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Proc Combust Inst. 2007;31:2089–96.

    Google Scholar 

  10. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496:1–12.

    CAS  Google Scholar 

  11. Korobeinichev OP, Paletskii AA, Volkov EN. Flame structure and combustion chemistry of energetic materials. Russ J Phys Chem B. 2008;2:206–28.

    Google Scholar 

  12. Xie MZ, Heng SY, Liu ZR, Wang H, Wang XH, Zhao FQ. Research on the catalytic thermal decomposition of RDX-CMDB propellants by TG-DSC-IR-MS. J Solid Rock Tech. 2009;32:539–42.

    CAS  Google Scholar 

  13. Huang HF, Shi YM, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9.

    CAS  Google Scholar 

  14. An Q, Liu WG, Goddard WA, Cheng T, Zybin SV, Xiao H. Initial steps of thermal decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate crystals from quantum mechanics. J Phys Chem C. 2014;118:27175–81.

    CAS  Google Scholar 

  15. Wang JF, Chen SS, Jin SH, Shi R, Yu ZF, Su Q, Ma X, Zhang CY, Shu QH. The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. J Therm Anal Calorim. 2018;134:2049–55.

    CAS  Google Scholar 

  16. Wang JF, Chen SS, Jin SH, Shu QH, Zhang XP, Shi R. Thermal behavior, compatibility study and safety assessment of diammonium 5,50-bistetrazole-1,10-diolate (ABTOX). J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08605-x.

    Article  Google Scholar 

  17. Qin H, Zha M, Ma Z, Zhao F, Xu S, Xu H. Controllable fabrication of CuO/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent recrystallization. Prop Explos Pyrotech. 2014;39:694–700.

    CAS  Google Scholar 

  18. Zhang Y, Wei T, Xu KZ, Ren Z, Xiao L, Song J, Zhao FQ. Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7. RSC Adv. 2015;5:75630–5.

    CAS  Google Scholar 

  19. Gao HX, Zhao FQ, Luo Y, Hao HX, Pei Q, Li SW. Synthesis of nanocomposite PbO·SnO2 and its effect on the combustion properties of DB and RDX-CMDB propellants. Chin J Expl Propell. 2012;35:15–8.

    CAS  Google Scholar 

  20. Zhang Y, Xiao L, Xu KZ, Song J, Zhao FQ. Graphene oxide-enveloped Bi2WO6 composites as a highly efficient catalyst for the thermal decomposition of cyclotrimethylene -trinitramine. RSC Adv. 2016;6:42428–34.

    CAS  Google Scholar 

  21. Yan W, Cao X, Ke K, Tian J, Jin C, Yang R. One-pot synthesis of monodispersed porous CoFe2O4 nanospheres on graphene as an efficient electrocatalyst for oxygen reduction and evolution reactions. RSC Adv. 2016;6:307–13.

    CAS  Google Scholar 

  22. Zu YQ, Zhang Y, Xu KZ, Zhao FQ. Graphene oxide-MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. Rsc Adv. 2016;6:31046–52.

    CAS  Google Scholar 

  23. Eigler S, Hirsch A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Edit. 2014;53:7720–38.

    CAS  Google Scholar 

  24. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.

    PubMed  CAS  Google Scholar 

  25. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Kumar GG. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron. 2015;64:269–76.

    PubMed  CAS  Google Scholar 

  26. Vinothkanna M, Karthikeyan C, Kumar GG, Kim AR, Yoo DJ. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A. 2015;136:256–64.

    Google Scholar 

  27. Rani GJ, Babu KJ, Kumar GG, Rajan MAJ. Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine. J Alloy Compd. 2016;688:500–12.

    CAS  Google Scholar 

  28. Cui ZM, Jiang LY, Song WG, Guo YG. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater. 2009;21:1162–6.

    CAS  Google Scholar 

  29. Chandra V, Park J, Chun Y, Lee JW, Hwang I, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4:3979–86.

    PubMed  CAS  Google Scholar 

  30. Shi R, Yan L, Xu T, Liu D, Zhu Y, Zhou J. Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke. J Chromatogr A. 2015;1375:1–7.

    PubMed  CAS  Google Scholar 

  31. Zhou G, Wang D, Yin L, Li N, Li F, Cheng H. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano. 2012;6:3214–23.

    PubMed  CAS  Google Scholar 

  32. Chen T, Du P, Jiang W, Liu J, Hao GZ, Gao H, Xiao L, Ke X, Zhao FQ, Xuan CL. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:83838–47.

    CAS  Google Scholar 

  33. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci. 1999;212:49–57.

    CAS  Google Scholar 

  34. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C. 2011;115:17009–19.

    CAS  Google Scholar 

  35. Petit C, Seredych M, Bandosz TJ. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J Mater Chem. 2009;19:9176–85.

    CAS  Google Scholar 

  36. Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S. A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir. 2014;30:6556–64.

    PubMed  CAS  Google Scholar 

  37. Li H, Xu T, Wang C, Chen J, Zhou H, Liu H. Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity condition. Tribol Lett. 2005;19:231–8.

    Google Scholar 

  38. Zhou J, Song H, Ma L, Chen X. Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 2011;1:782–91.

    CAS  Google Scholar 

  39. Fujii T, de Groot F, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted olecular-beam epitaxy. Phys Rev B. 1999;59:3195–202.

    CAS  Google Scholar 

  40. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta. 2010;56:834–40.

    CAS  Google Scholar 

  41. Fitzgerald RP, Brewster MQ. Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame. 2004;136:313–26.

    CAS  Google Scholar 

  42. Lu ZP, Xiong Y, Xue XG, Zhang CY. Unusual protonation of the hydroxylammonium cation leading to the low thermal stability of hydroxylammonium-based salts. J Phys Chem C. 2017;121:27874–85.

    CAS  Google Scholar 

  43. Kissinger HE. Reaction kinetics on differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  44. Yan QL, Zeman S, Zhang JG, Qi XF, Li T, Musil T. Multistep thermolysis mechanisms of azido-s-triazine derivatives and kinetic compensation effects for the rate-limiting processes. J Phys Chem C. 2015;119:14861–72.

    CAS  Google Scholar 

  45. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance from the National Natural Science Foundation of China (21173163, 21473130 and 21503163) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, F., Yang, Y. et al. Enhanced catalytic performance on the thermal decomposition of TKX-50 by Fe3O4 nanoparticles highly dispersed on rGO. J Therm Anal Calorim 140, 1759–1767 (2020). https://doi.org/10.1007/s10973-019-08891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08891-5

Keywords

Navigation