Skip to main content
Log in

Cellulose-Based Composite Gas Separation Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A “green” method to synthesize new composite membranes from a cellulose solution in phosphoric acid on various ultrafiltration substrates is proposed. The method can be used in industry; it differs from the conventional viscose method for producing cellophane and other known methods for synthesizing cellulose-based gas separation membranes by the absence of gaseous emissions and wastewater. The structure of the synthesized samples is studied by electron microscopy, X-ray diffraction, and thermal analysis (DSC). Analysis of the mechanical properties of the samples shows that the new membranes have better mechanical characteristics than those of homogeneous pure cellulose films synthesized in this study and commercial cellophane films. The gas transport properties of new membranes with respect to O2, N2, CO2, CH4, and He are studied. It is found that the proposed membrane synthesis method provides the formation of uniform dense gas separation layers of cellulose; the membranes show a three orders of magnitude higher gas permeability than that of cellophane films. It is shown that the highest ideal selectivity is exhibited by membranes with a gas separation layer of cellulose on viscose fabric substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Ichwan and T. W. Son, J. Appl. Polym. Sci. 124, 1409 (2012). https://doi.org/10.1002/app.35104

    Article  CAS  Google Scholar 

  2. M. S. M. Eldin, Encyclopedia of Membranes, Ed. by E. Drioli and L. Giorno (Springer, Berlin, 2014), p. 2279. https://doi.org/10.1007/978-3-64240872-4_1857-1

    Google Scholar 

  3. D. Klemm, Angew. Chem. Int. Ed. Engl. 44, 3358 (2005). https://doi.org/10.1002/anie.200460587

    Article  CAS  PubMed  Google Scholar 

  4. X. Jie, Y. Cao, and Q. Yuan, J. Appl. Polym. Sci. 91, 1873 (2004). https://doi.org/10.1002/app.2385

    Article  CAS  Google Scholar 

  5. S. Sen, J. D. Martin, and D. S. Agruropoluos, ACS Sust. Chem. Eng. 8, 858 (2013). https://doi.org/10.1021/sc400085a

    Article  CAS  Google Scholar 

  6. Q. Yang, H. Fukuzumi, Ts. Saito, et al., Biomacromolecules 12, 2766 (2011). https://doi.org/10.1021/bm200766v

    Article  CAS  PubMed  Google Scholar 

  7. Q. Xu, C. Chen, K. Rosswutm, and T. Yao, Carbohydr. Polym. 149, 274 (2016). https://doi.org/10.1016/j.carbpol.2016.04.114

    Article  CAS  PubMed  Google Scholar 

  8. L. Zhang, Q. Yang, and W. Fang, J. Membr. Sci. 56, 207 (1991). https://doi.org/10.1016/S03767388(00)80809-1

    Article  CAS  Google Scholar 

  9. N. N. Li, A. G. Fane, and W. S. W. Ho, Advanced Membrane Technology and Applications (Wiley, Hoboken, 2008).

    Book  Google Scholar 

  10. D. Nussbaumer, US Patent, No. 7,422,686 (2008).

  11. R. Tucelli and P. V. McGrath, US Patent, No. 5,522,991 (1996).

  12. D. D. Grinshpan, A. N. Gonchar, and N. G. Tsygankova, J. Eng. Phys. Thermophys. 84, 594 (2011). https://doi.org/10.1007/s10891-011-0510-z

    Article  CAS  Google Scholar 

  13. D. D. Grinshpan, T. A. Savitskaya, F. N. Kaputskii, et al., Zh. Prikl. Khim., BGU, No. 6, 1342 (1988).

    Google Scholar 

  14. A. J. Sanjari and M. Asghari, ChemBioEng. Rev. 3, 134 (2016).https://doi.org/10.1002/cben.201500020

    Article  CAS  Google Scholar 

  15. E. A. Efimova, D. A. Syrtsova, and V. V. Teplyakov, Sep. Purif. Technol. 179, 467 (2017).

    Article  CAS  Google Scholar 

  16. X. Ju, et al., Carbohydr. Polym. 123, 476 (2015).

    Article  CAS  Google Scholar 

  17. V. B. Filistovich, T. A. Savitskaya, I. M. Kimlenko, et al., Zh. BGU, Khim. 1, 66 (2019).

    Google Scholar 

  18. Topics in Applied Physics, vol. 35: Uranium Enrichment, Ed. by S. Villani (Springer, Berlin, 1979).

    Google Scholar 

  19. M. A. Herrera, A. P. Mathew, and K. Oksman, Carbohydr. Polym. 112, 494 (2014). https://doi.org/10.1016/j.carbpol.2014.06.036

    Article  CAS  PubMed  Google Scholar 

  20. J. Brandup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, Ed. by A. Abe and D. R. Bloch, 4th Ed. (Wiley, New York, 1999), p. 2250.

    Google Scholar 

  21. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  22. Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and Eu. Finkelshtein (Wiley, Chichester, 2017).

    Google Scholar 

Download references

Funding

The development and synthesis of the new membranes, the study of their structure, and the determination of the gas separation properties of the layers were conducted under the support of the Belarusian Republican Foundation for Basic Research (project no. Х18Р-176) and the Russian Foundation for Basic Research (project no. 18-53-00017). The technique for determining the parameters of gas transport across the new membranes was developed under the state task to the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Syrtsova.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrtsova, D.A., Teplyakov, V.V., Filistovich, V.A. et al. Cellulose-Based Composite Gas Separation Membranes. Membr. Membr. Technol. 1, 353–360 (2019). https://doi.org/10.1134/S2517751619060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619060052

Keywords:

Navigation