Skip to main content
Log in

On the Local Convergence of Modified Homeier-Like Method in Banach Spaces

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The aim of this article is to investigate the local convergence analysis of the multi-step Homeier-like approach in order to approximate the solution of nonlinear equations in Banach spaces, which fulfilled the Lipschitz as well as Hölder continuity condition. The Hölder condition is more relax than Lipschitz condition. Also, the existence and uniqueness theorem has been derived and found their error bounds. Numerical examples are available to appear the importance of theoretical discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, J.R. and Arora, H., A New Family of Optimal Eighth-Order Methods with Dynamics for Nonlinear Equations, Appl.Math. Comput., 2016, vol. 273, pp. 924–933.

    MathSciNet  Google Scholar 

  2. Amat, S., Busquier, S., and Plaza, S., Chaotic Dynamics of a Third-Order Newton-Type Method, J. Math. An. Appl., 2010, vol. 366, pp. 24–32.

    Article  MathSciNet  MATH  Google Scholar 

  3. Behl, R. and Motsa, S.S., Geometric Construction of Eighth-Order Optimal Families of Ostrowski’s Method, Sci. World J., 2015, vol. 2015; article ID 614612.

    Google Scholar 

  4. Argyros, I.K. and Hilout, S., Computational Methods in Nonlinear Analysis, New Jersey:World Scientific, 2013.

    Book  MATH  Google Scholar 

  5. Traub, J.F., IterativeMethods for the Solution of Equations, Englewood Cliffs,NewJersey: Prentice-Hall, 1964.

    Google Scholar 

  6. Rall, L.B. and Schwetlick, H., Computational Solution of Nonlinear Operator Equations, J. Appl. Math. Mech., 1972, vol. 52, pp. 630/631.

    Google Scholar 

  7. Amat, S., Busquier, S., and Gutiérrez, J.M., Geometric Constructions of Iterative Functions to Solve Nonlinear Equations, J. Comp. Appl.Math., 2003, vol. 157, pp. 197–205.

    Article  MathSciNet  MATH  Google Scholar 

  8. Argyros, I.K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, vol. 15, New York: Elsevier, 2007.

    MATH  Google Scholar 

  9. Chun, C., Stanica, P., and Neta, B., Third-Order Family ofMethods in Banach Spaces, Comp.Math. Appl., 2011, vol. 61, pp. 1665–1675.

    Article  MATH  Google Scholar 

  10. Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, New York: Academic, 1970.

    MATH  Google Scholar 

  11. Argyros, I.K. and Khattri, S.K., Local Convergence for a Family of Third-Order Methods in Banach Spaces, Punjab Univ. J. Math., 2016, vol. 46, pp. 52–63.

    Google Scholar 

  12. Argyros, I.K. and George, S., Local Convergence of Two Competing Third-Order Methods in Banach Space, Appl.Math., 2016, vol. 41, pp. 341–350.

    MathSciNet  MATH  Google Scholar 

  13. Argyros, I.K., Gonzalez, D., and Khattri, S.K., Local Convergence of aOne Parameter Fourth-Order Jarratt- Type Method in Banach Spaces, Comment. Math. Univ. Carolin., 2016, vol. 57, pp. 289–300.

    MathSciNet  MATH  Google Scholar 

  14. Cordero, A., Ezquerro, J.A., Herńandez-Veron, M.A., and Torregrosa, J.R., On the Local Convergence of a Fifth-Order IterativeMethod in Banach Spaces, Appl.Math. Comput., 2015, vol. 251, pp. 396–403.

    Google Scholar 

  15. Polyanin, A.D. and Manzhirov, A.V., Handbook of Integral Equations, Boca Raton: CRC Press, 1998.

    Book  MATH  Google Scholar 

  16. Martinez, E., Singh, S., Hueso, J.L., and Gupta, D.K., Enlarging the Convergence Domain in Local Convergence Studies for Iterative Methods in Banach Spaces, Appl. Math. Comput., 2016, vol. 281, pp. 252–265.

    MathSciNet  Google Scholar 

  17. Singh, S., Gupta, D.K., Martinez, E., and Hueso, J.L., Semilocal and Local Convergence of a Fifth- Order Iteration with Fréchet Derivative Satisfying Hölder Condition, Appl. Math. Comput., 2016, vol. 276, pp. 266–277.

    MathSciNet  Google Scholar 

  18. Argyros, I.K. and George, S., Local Convergence for Some High Convergence Order Newton-LikeMethods with Frozen Derivatives, SeMA J., 2015, vol. 70, pp. 47–59.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X. and Kou, J., Convergence for a Class of Multi-Point Modified Chebyshev–Halley Methods under the Relaxed Conditions, Num. Algor., 2015, vol. 68, pp. 569–583.

    Article  MathSciNet  MATH  Google Scholar 

  20. Argyros, I.K. and Magrenan, A.A., A Study on the Local Convergence and the Dynamics of Chebyshev–Halley-TypeMethods Free from Second Derivative, Num. Algor., 2016, vol. 71, pp. 1–23.

    Article  MATH  Google Scholar 

  21. Argyros, I.K. and George, S., Local Convergence of DeformedHalleyMethod in Banach Space under Holder Continuity Conditions, J. Nonlin. Sci. Appl., 2015, vol. 8, pp. 246–254.

    Article  MATH  Google Scholar 

  22. Argyros, I.K. and George, S., Local Convergence for Deformed Chebyshev-Type Method in Banach Space underWeak Conditions, Cogent Math., 2015, vol. 2, pp. 1–12.

    Article  Google Scholar 

  23. Argyros, I.K. and George, S., Local Convergence of Modified Halley-Like Methods with Less Computation of Inversion, Novi Sad J.Math., 2015, vol. 45, pp. 47–58.

    Article  MathSciNet  MATH  Google Scholar 

  24. George, S. and Argyros, I.K., A Unified Local Convergence for Jarratt-Type Methods in Banach Space under Weak Conditions, Thai J. Math., 2015, vol. 13, no. 1, pp. 165–176.

    MathSciNet  MATH  Google Scholar 

  25. Sharma, J.R. and Gupta, P., An Efficient Fifth-Order Method for Solving Systems of Nonlinear Equations, Comp.Math. Appl., 2014, vol. 67, pp. 591–601.

    Article  MathSciNet  MATH  Google Scholar 

  26. Homeier, H.H.H., A Modified Newton Method with Cubic Convergence: The Multivariate Case, J. Comp. Appl.Math., 2004, vol. 169, pp. 161–169.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Panday.

Additional information

Original Russian Text © B. Panday, J.P. Jaiswal, 2018, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2018, Vol. 21, No. 4, pp. 419–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panday, B., Jaiswal, J.P. On the Local Convergence of Modified Homeier-Like Method in Banach Spaces. Numer. Analys. Appl. 11, 332–345 (2018). https://doi.org/10.1134/S1995423918040067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423918040067

Keywords

Navigation