Skip to main content
Log in

Mimicking the Human Physiology with Microphysiological Systems (MPS)

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microphysiological systems (MPS), also known as organ-on-a-chip technology, combine cell culture models and microtechnology to mimic tissue microenvironment and provide improved physiological relevance of in vitro model systems. The unique advantage of MPS technology is manifested where multiple organs interact through complex mechanisms. Multi-organ MPS, or body-on-a-chip systems, aim to recapitulate organ interactions and provide a model of the whole body. Combination of the state-of-the-art microtechnology and mathematical modeling platforms to design and interpret multi-organ systems has contributed to the development of novel MPS for testing drugs and modeling diseases. Here, we summarize recent progress in the development of MPS, with emphasis on multi-organ MPS combined with mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. Skardal, A., Shupe, T., Atala, A. Organoid-on-a-chip and body-on- a-chip systems for drug screening and disease modeling. Drug Discovery Today 21, 1399–1411 (2016).

    CAS  PubMed  Google Scholar 

  2. Greek, R. & Menache, A. Systematic reviews of animal models: methodology versus epistemology. Int. J. Med. Sci. 10, 206–221 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Sung, J.H., Wang, Y.I., Narasimhan Sriram, N., Jackson, M., Long, C., Hickman, J.J. & Shuler, M.L. Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351 (2019).

    CAS  PubMed  Google Scholar 

  4. Isoherranen, N., Madabushi, R. & Huang, S.M. Emerging Role of Organ-on- a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation. Clin. Transl. Sci. 12, 113–121 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Wang, Y.I., Carmona, C., Hickman, J.J. & Shuler, M.L. Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges. Adv. Healthcare Mater. 7, 1701000 (2018).

    Google Scholar 

  6. Lee, S.H. & Sung, J.H. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv. Healthcare Mater. 7, 1700419 (2018).

    Google Scholar 

  7. Ishida, S. Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies. Drug Metab. Pharmacokinet. 33, 49–54 (2018).

    CAS  PubMed  Google Scholar 

  8. Sin, A., Chin, K.C., Jamil, M.F., Kostov, Y., Rao, G. & Shuler, M.L. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20, 338–345 (2004).

    CAS  PubMed  Google Scholar 

  9. Viravaidya, K., Sin, A. & Shuler, M.L. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  10. Sontheimer-Phelps, A., Hassell, B.A. & Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    CAS  PubMed  Google Scholar 

  11. Mittal, R., Woo, F.W., Castro, C.S., Cohen, M.A., Karanxha, J., Mittal, J., Chhibber, T. & Jhaveri, V.M. Organ-on-chip models: Implications in drug discovery and clinical applications. J. Cell. Physiol. 234, 8352–8380 (2019).

    CAS  PubMed  Google Scholar 

  12. Bauer, S., Huldt, C.W., Kanebratt, K.P., Durieux, I., Gunne, D., Andersson, S., Ewart, L., Haynes, W.G., Maschmeyer, I., Winter, A., Ämmälä, C., Marx, U. & Andersson, T.B. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Sci. Rep. 7, 14620 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Hübner, J., Raschke, M., Rütschle, I., Gräßle, S., Hasenberg, T., Schirrmann, K., Lorenz, A., Schnurre, S., Lauster, R., Maschmeyer, I., Steger-Hartmann, T. & Marx, U. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci. Rep. 8, 15010 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Esch, M.B., Ueno, H., Applegate, D.R. & Shuler, M.L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16, 2719–2729 (2016).

    CAS  PubMed  Google Scholar 

  15. Frey, O., Misun, P.M., Fluri, D.A., Hengstler, J.G. & Hierlemann, A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 5, 4250 (2014).

    CAS  PubMed  Google Scholar 

  16. Coppeta, J.R., Mescher, M.J., Isenberg, B.C., Spencer, A.J., Kim, E.S., Lever, A.R., Mulhern, T.J., Prantil-Baun, R., Comolli, J.C. & Borenstein, J.T. A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control. Lab Chip 17, 134–144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Edington, Chen, W.L.K., Geishecker, E., Kassis, T., Soenksen, L.R., Bhushan, B.M., Freake, D., Kirschner, J., Maass, C., Tsamandouras, N., Valdez, J., Cook, C.D., Parent, T., Snyder, S., Yu, J., Suter, E., Shockley, M., Velazquez, J., Velazquez, J.J., Stockdale, L., Papps, J.P., Lee, I., Vann, N., Gamboa, M., LaBarge, M.E., Zhong, Z., Wang, X., Boyer, L.A., Lauffenburger, D.A., Carrier, R.L., Communal, C., Tannenbaum, S.R., Stokes, C.L., Hughes, D.J., Rohatgi, G., Trumper, D.L., Cirit, M. & Griffith, L.G. Interconnected Mi-crophysiological Systems for Quantitative Biology and Pharmacology Studies. Sci. Rep. 8, 4530 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Xiao, S., Coppeta, J.R., Rogers, H.B., Isenberg, B.C., Zhu, J., Olalekan, S.A., McKinnon, K.E., Dokic, D., Rashedi, A.S., Haisenleder, D.J., Malpani, S.S., Arnold-Murray, C.A., Chen, K., Jiang, M., Bai, L., Nguyen, C.T., Zhang, J., Laronda, M.M., Hope, T.J., Maniar, K.P., Pavone, M.E., Avram, M.J., Sefton, E.C., Getsios, S., Burdette, J.E., Kim, J.J., Borenstein, J.T. & Woodruff, T.K. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsamandouras, N., Chen, W.L.K., Edington, C.D., Stokes, C.L., Griffith, L.G. & Cirit, M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS J. 19, 1499–1512 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, W.L.K., Edington, C., Suter, E., Yu, J., Velazquez, J.J., Velazquez, J.G., Shockley, M., Large, E.M., Venkataramanan, R., Hughes, D.J., Stokes, C.L., Trumper, D.L., Carrier, R.L., Cirit, M., Griffith, L.G. & Lauffenburger, D.A. Integrated gut/liver micro-physiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114, 2648–2659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sung, J.H., Kam, C. & Shuler, M.L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).

    CAS  PubMed  Google Scholar 

  22. Lee, H., Kim, D.S., Ha, S.K., Choi, I., Lee, J.M. & Sung, J.H. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114, 432–443 (2017).

    CAS  PubMed  Google Scholar 

  23. Lee, D.W., Choi, N. & Sung, J.H. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture. Biotechnol. Prog. (2018).

    Google Scholar 

  24. Wang, Y.I. & Shuler, M.L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18, 2563–2574 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Satoh, T., Sugiura, S., Shin, K., Onuki-Nagasaki, R., Ishida, S., Kikuchi, K., Kakikic, M. & Kanamori, T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18, 115–125 (2017).

    CAS  PubMed  Google Scholar 

  26. Berthier, E., Young, E.W. & Beebe, D. Engineers are from PDMS-land, Biologists are from Poly-styrenia. Lab Chip 12, 1224–1237 (2012).

    CAS  PubMed  Google Scholar 

  27. Esch, M.B., Prot, J.-M., Wang, Y.I., Miller, P., Llamas-Vidales, J.R., Naughton, B.A., Applegate, D.R. & Shuler, M.L. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab Chip 15, 2269–2277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dubiak-Szepietowska, M., Karczmarczyk, A., Jönsson-Niedziólka, M., Winckler, T. & Feller, K.H. Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicol. Appl. Pharmacol. 294, 78–85 (2016).

    CAS  PubMed  Google Scholar 

  29. Rojkind, M., Novikoff, P.M., Greenwel, P., Rubin, J., Rojas-Valencia, L., de Carvalho, A.C., Stockert, R., Spray, D., Hertzberg, E.L. & Wolkoff, A.W. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am. J. Pathol. 146, 1508–1520 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Du, Y., Li, N., Yang, H., Luo, C., Gong, Y., Tong, C., Gao, Y., Lü, S. & Long M. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17, 782–794 (2017).

    CAS  PubMed  Google Scholar 

  31. Kang, Y.B., Sodunke, T.R., Lamontagne, J., Cirillo, J., Rajiv, C., Bouchard, M.J. & Noh, M. Liver sinusoid on a chip: Long- term layered co-culture of primary rat hepatocytes and endothelial cells in mi-crofluidic platforms. Biotechnol. Bioeng. 112, 2571–2582 (2015).

    CAS  PubMed  Google Scholar 

  32. Prodanov, L., Jindal, R., Bale, S.S., Hegde, M., McCarty, W.J., Golberg, I., Bhushan, A., Yarmush, M.L. & Usta, O.B. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioeng. 113, 241–246 (2016).

    CAS  PubMed  Google Scholar 

  33. Chau, D.Y., Johnson, C., MacNeil, S., Haycock, J.W. & Ghaemmaghami, A.M. The development of a 3D immunocompetent model of human skin. Biofabrication 5, 035011 (2013).

    PubMed  Google Scholar 

  34. Pupovac, A., Senturk, B., Griffoni, C., Maniura-Weber, K., Rottmar, M. & McArthur, S.L. Toward Immu-nocompetent 3D Skin Models. Adv. Healthcare Mater. 7, e1701405 (2018).

    Google Scholar 

  35. Abaci, H.E., Gledhill, K., Guo, Z., Christiano, A.M. & Shuler, M.L. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15, 882–888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Groeber, F., Engelhardt, L., Lange, J., Kurdyn, S., Schmid, F.F., Rücker, C., Mielke, S., Walles, H. & Hansmann, J. A first vascularized skin equivalent as an alternative to animal experimentation. ALTEX 33, 415–422 (2016).

    PubMed  Google Scholar 

  37. Lee, S., Jin, S.P., Kim, Y.K., Sung, G.Y., Chung, J.H. & Sung, J.H. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed. Microdevices 19, 22 (2017).

    PubMed  Google Scholar 

  38. Wufuer, M., Lee, G.H., Hur, W., Jeon, B., Kim, B.J., Choi, T.H. & Lee, S.H. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 6, 37471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Herland, A., van der Meer, A.D., FitzGerald, E.A., Park, T.-E., Sleeboom, J.J.F. & Ingberet, D.E. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS One 11, e0150360 (2016).

    Google Scholar 

  40. Adriani, G., Ma, D., Pavesi, A., Kamm, R.D. & Goh, E.L. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothe-lial cells as a blood-brain barrier. Lab Chip 17, 448–459 (2017).

    CAS  PubMed  Google Scholar 

  41. Cho, H., Seo, J.H., Wong, K.H.K., Terasaki, Y., Park, J., Bong, K., Arai, K., Lo, E.H. & Irimia, D. Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology. Sci. Rep. 5, 15222 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y.I., Abaci, H.E. & Shuler, M.L. Microflu-idic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    CAS  PubMed  Google Scholar 

  43. Mi, S., Yi, X., Du, Z., Xu, Y. & Sun, W. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells. Biofabrication 10, 025010 (2018).

    PubMed  Google Scholar 

  44. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y. & Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  PubMed  Google Scholar 

  45. Lee, S., Ko, J., Park, D., Lee, S.-R., Chung, M., Lee, Y. & Jeon, N.L. Microfluidic-based vascular-ized microphysiological systems. Lab Chip 18, 2686–2709 (2018).

    CAS  PubMed  Google Scholar 

  46. Sung, J.H. & Shuler, M.L. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cy-totoxicity of anti-cancer drugs. Lab Chip 9, 1385–1394 (2009).

    CAS  PubMed  Google Scholar 

  47. Jellali, R., Bricks, T., Jacques, S., Fleury, M.J., Paullier, P., Merlier, F. & Leclerc, E. Long-term human primary hepatocyte cultures in a microfluidic liver bi-ochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm. Drug Dispos. 37, 264–275 (2016).

    CAS  PubMed  Google Scholar 

  48. Lee, D.W., Ha, S.K., Choi, I. & Sung, J.H. 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomed. Microdevices 19, 100 (2017).

    CAS  PubMed  Google Scholar 

  49. Choe, A., Ha, S.K., Choi, I, Choi, N. & Sung, J.H. Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomed. Microdevices 19, 4 (2017).

    PubMed  Google Scholar 

  50. Khetani, S.R., Berger, D.R., Ballinger, K.R., Davidson, M.D., Lin, C. & Ware, B.R. Microengi-neered liver tissues for drug testing. J. Lab. Autom. 20, 216–250 (2015).

    CAS  PubMed  Google Scholar 

  51. Pang, K.S. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab. Dispos. 31, 1507–1519 (2003).

    CAS  PubMed  Google Scholar 

  52. Esch, M.B., Sung, J.H., Yang, J., Yu, C., Yu, J., March, J.C. & Shuler, M.L. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed. Microdevices 14, 895–906 (2012).

    CAS  PubMed  Google Scholar 

  53. Mahler, G.J., Esch, M.B., Glahn, R.P. & Shuler, M.L. Characterization of a gastrointestinal tract mi-croscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104, 193–205 (2009).

    CAS  PubMed  Google Scholar 

  54. Sung, J.H., Yu, J., Luo, D., Shuler, M.L. & March, J.C. Microscale 3-D hydrogel scaffold for biomi-metic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011).

    CAS  PubMed  Google Scholar 

  55. Shim, K.Y., Lee, D., Han, J., Nguyen, N.T., Park, S. & Sung, J.H. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19, 37 (2017).

    PubMed  Google Scholar 

  56. Wells, J.M., Rossi, O., Meijerink, M. & van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1, 4607–4614 (2011).

    CAS  PubMed  Google Scholar 

  57. Marzorati, M., Vanhoecke, B., De Ryck T., Sadaghian M.S.,, Pinheiro, I., Possemiers, S., Van den Abbeele, P., Derycke, L., Bracke, M., Pieters, J., Hennebel, T., Harmsen, H.J., Verstraete, W. & Van de Wiele, T. The HMI module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 14, 133 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Chi, M., Yi, B., Oh, S., Park, D.J., Sung, J.H. & Park, S. A microfluidic cell culture device (muFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed. Microdevices 17, 9966 (2015).

    PubMed  Google Scholar 

  59. Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    CAS  PubMed  Google Scholar 

  60. Yu, J., Peng, S., Luo, D. & March, J.C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109, 2173–2178 (2012).

    CAS  PubMed  Google Scholar 

  61. Bricks, T., Hamon, J., Fleury, M.J., Jellali, R., Merlier, F., Herpe, Y.E., Seyer, A., Regimbeau, J.M., Bois, F. & Leclerc, E. Investigation of omeprazole and phenacetin first-pass metabolism in humans using a microscale bioreactor and pharmacokinetic models. Biopharm. Drug Dispos. 36, 275–293 (2015).

    CAS  PubMed  Google Scholar 

  62. Prot, J.M., Maciel, L., Bricks, T., Merlier, F., Cotton, J., Paullier, P., Bois, F.Y. & Leclerc, E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 111, 2027–2040 (2014).

    CAS  PubMed  Google Scholar 

  63. Skardal, A., Murphy, S.V., Devarasetty, M., Mead, I., Kang, H.-W., Seol, Y.-J., Zhang, Y.S., Shin, S.-R., Zhao, L., Aleman, J., Hall, A.R., Shupe, T.D., Kleensang, A., Dokmeci, M.R., Lee, S.J., Jackson, J.D., Yoo, J.J., Hartung, T., Khademhosseini, A., Soker, S., Bishop, C.E. & Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Oleaga, C., Bernabini, C., Smith, A.S., Srinivasan, B., Jackson, M., McLamb, W., Platt, V., Bridges, R., Cai, Y., Santhanam, N., Berry, B., Najjar, S., Akanda, N., Guo, X., Martin, C., Ekman, G., Esch, M.B., Langer, J., Ouedraogo, G., Cotovio, J., Breton, L., Shuler, M.L. & Hickman, J.J. Multi-Organ tox-icity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Oleaga, C., Riu, A., Rothemund, S., Lavado, A., McAleer, C.W., Long, C.J., Persaud, K., Narasimhan, N.S., Tran, M., Roles, J., Carmona-Moran, C.A., Sasserath, T., Elbrecht, D.H., Kumanchik, L., Bridges, L.R., Martin, C., Schnepper, M.T., Ekman, G., Jackson, M., Wang, Y.I., Note, R., Langer, J., Teissier, S. & Hickman, J.J. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182, 176–190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dehne, E.-M., Hasenberg, T., Horland, R. & Marx, U. Multi-organ on a chip: Human physiology-based assessment of liver toxicity. Toxicol. Lett. 280, S75 (2017).

    Google Scholar 

  67. Maschmeyer, I., Hasenberg, T., Jaenicke, A., Lindner, M., Lorenz, A.K., Zech, J., Garbe, L.A., Sonntag, F., Hayden, P., Ayehunie, S., Lauster, R., Marx, U. & Materne, E.M. Chip-based human liver-intestine and liver-skin co-cultures—A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 95, 77–87 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Materne, E.M., Ramme, A.P., Terrasso, A.P., Serra, M., Alves, P.M., Brito, C., Sakharov, D.A., Tonevitsky, A.G., Lauster, R. & Marx, U. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J. Biotechnol. 205, 36–46 (2015).

    CAS  PubMed  Google Scholar 

  69. Wagner, I., Materne, E.M., Brincker, S., Süssbier, U., Frädrich, C., Busek, M., Sonntag, F., Sakharov, D.A., Trushkin, E.V., Tonevitsky, A.G., Lauster, R. & Marx, U. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).

    CAS  PubMed  Google Scholar 

  70. Miller, P.G. & Shuler, M.L. Design and demonstration of a pumpless 14 compartment microphysio-logical system. Biotechnol. Bioeng. 113, 2213–2227 (2016).

    CAS  PubMed  Google Scholar 

  71. Konrad, D. & Wueest, S. The gut-adipose-liver axis in the metabolic syndrome. Physiology (Bethesda) 29, 304–313 (2014).

    CAS  Google Scholar 

  72. Lee, S.Y. & Sung, J.H. Gut-liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol. Bioeng. 115, 2817–2827 (2018).

    CAS  PubMed  Google Scholar 

  73. Iori, E., Vinci, B., Murphy, E., Marescotti, M.C., Avogaro, A. & Ahluwalia, A. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS One 7, e34704 (2012).

    Google Scholar 

  74. Sung, J.H., Wang, Y.I., Kim, J.H., Lee, J.M. & Shuler, M.L. Application of Chemical Reaction Engineering Principles to “Body-on-a-Chip” Systems AIChE J. 64, 4351–4360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Davis, H., Gonzalez, M., Stancescu, M., Love, R., Hickman, J.J. & Lambert, S. A phenotypic culture system for the molecular analysis of CNS mye-lination in the spinal cord. Biomaterials 35, 8840–8845 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahluwalia, A. Allometric scaling in-vitro. Sci. Rep. 7, 42113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sbrana, T. & Ahluwalia, A. Engineering Quasi-Vivo in vitro organ models. Adv. Exp. Med. Biol. 745, 138–153 (2012).

    CAS  PubMed  Google Scholar 

  78. Ucciferri, N., Sbrana, T. & Ahluwalia, A. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism. Front. Bioeng. Bio-technol. 2, 74 (2014).

    Google Scholar 

  79. Mazzei, D., Guzzardi, M.A., Giusti, S. & Ahluwalia, A. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnol. Bioeng. 106, 127–137 (2010).

    CAS  PubMed  Google Scholar 

  80. Moraes, C., Labuz, J.M., Leung, B.M., Inoue, M., Chun, T.H. & Takayama, S. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5, 1149–1161 (2013).

    CAS  Google Scholar 

  81. Wikswo, J.P., Curtis, E.L., Eagleton, Z.E., Evans, B.C., Kole, A., Hofmeister, L.H. & Matloff, W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abaci, H.E. & Shuler, M.L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7, 383–391 (2015).

    Google Scholar 

  83. Stokes, C.L., Cirit, M. & Lauffenburger, D.A. Physiome-on-a-Chip: The Challenge of “Scaling” in Design, Operation, and Translation of Microphysi-ological Systems. CPT: Pharmacometrics Syst. Pharmacol. 4, 559–562 (2015).

    CAS  Google Scholar 

  84. Maass, C., Stokes, C.L., Griffith, L.G. & Cirit, M. Multi-functional scaling methodology for transla-tional pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS). Integr. Biol. 9, 290–302 (2017).

    Google Scholar 

  85. Urban, G., Bache, K., Phan, D.T.T., Sobrino, A., Shmakov, A.K., Hachey, S.J., Hughes, C.C.W. & Baldi, P. Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascular-ization Images. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 1029–1035 (2018).

    Google Scholar 

  86. Ouattara, D.A., Choi, S.H., Sakai, Y., Péry, A.R. & Brochot, C. Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Toxicol. Lett. 205, 310–319 (2011).

    CAS  PubMed  Google Scholar 

  87. Tatosian, D.A. & Shuler, M.L. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol. Bioeng. 103, 187–198 (2009).

    CAS  PubMed  Google Scholar 

  88. Yu, J., Cilfone, N.A., Large, E.M., Sarkar, U., Wishnok, J.S., Tannenbaum, S.R., Hughes, D.J., Lauffenburger, D.A., Griffith, L.G., Stokes, C.L. & Cirit, M. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration. CPT: Pharmacometrics Syst. Pharmacol. 4, 585–594 (2015).

    CAS  Google Scholar 

  89. Guo, X., Colon, A., Akanda, N., Spradling, S., Stancescu, M., Martin, C. & Hickman, J.J. Tissue engineering the mechanosensory circuit of the stretch reflex arc with human stem cells: Sensory neuron innervation of intrafusal muscle fibers. Bio-materials 122, 179–187 (2017).

    CAS  Google Scholar 

  90. Moore, N., Doty, D., Zielstorff, M., Kariv, I., Moy, L.Y., Gimbel, A., Chevillet, J.R., Lowry, N., Santos, J., Mott, V., Kratchman, L., Lau, T., Addona, G., Chen, H. & Borenstein, J.T. A multiplexed micro-fluidic system for evaluation of dynamics of immune-tumor interactions. Lab Chip 18, 1844–1858 (2018).

    CAS  PubMed  Google Scholar 

  91. Ribas, J., Pawlikowska, J. & Rouwkema, J. Micro-physiological systems: analysis of the current status, challenges and commercial future. Microphysiol. Syst. 2 (2018).

Download references

Acknowledgements

This work was supported by Ministry of Trade, Industry and Energy (MOTIE), Korea (10050154, Establishment of Infrastructure for industrialization of Korean Useful Microbes, R0004073), National Research Foundation of Korea (2016R1D1A1B03934710), and Hongik University Research Fund. This work was also partly supported by NIH (grant # R44TR001326 and U01CA214300). Authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hwan Sung or Michael L. Shuler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J.H., Koo, J. & Shuler, M.L. Mimicking the Human Physiology with Microphysiological Systems (MPS). BioChip J 13, 115–126 (2019). https://doi.org/10.1007/s13206-019-3201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3201-z

Keywords

Navigation