Skip to main content
Log in

Fabrication of Al2O3/FeAl Coating as Tritium Permeation Barrier on Tritium Operating Component on Quasi-CFETR Scale

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Limited CFETR-scale experience of engineering preparation techniques of tritium permeation barrier (TPB) exists up to date. Aimed at processing some real components that are usually tubular components sealed in one end, in the tritium cycling systems of China Fusion Engineering Test Reactor (CFETR), an Al2O3/FeAl coatings as TPB was prepared on tubular components of 321 type stainless steel components with a length of 400 mm and an external diameter of 150 mm, by Al-electroplating followed by heat treating and selective oxidation. The ability to construct TPB coated components on quasi-CFETR scale was demonstrated, with fabricating a TPB of Al2O3/FeAl coating with a double-layered structure, consisted of an outer γ-Al2O3 layer with a thickness of 0.3 µm and an inner (Fe,Cr,Ni)Al/(Fe,Cr,Ni)3Al layer of 40 µm in thickness. The tritium permeation reduction factors of the Al2O3/FeAl TPB on component were 229 and 96 at 500 and 600 °C respectively. Finally, signatures and gaps of TPB mass process on CFETR-scale were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Tanabe, Tritium fuel cycle in ITER and DEMO: issues in handling large amount of fuel. J. Nucl. Mater. 438, S19–S26 (2013)

    Article  ADS  Google Scholar 

  2. R.A. Causey, R.A. Karnesky, C. San Marchi, Tritium barriers and tritium diffusion in fusion reactors. Compr. Nucl. Mater. 4, 11–49 (2012)

    Google Scholar 

  3. I.R. Cristescu, I. Cristescu, L. Doerr, M. Glugla, D. Murdoch, Tritium inventories and tritium safety design principles for the fuel cycle of ITER. Nucl. Fusion 47, S458–S463 (2007)

    Article  ADS  Google Scholar 

  4. A. Perujo, K.S. Forcey, Tritium permeation barriers for fusion technology. Fusion Eng. Des. 28, 252–257 (1995)

    Article  Google Scholar 

  5. J. Konys, Review of tritium permeation barrier development for fusion application in the EU, in Proceedings of ITER TBM Project Meeting, 2004, UCLA

  6. J. Konys, Development of advanced processes for Al-based anticorrosion and T-permeation barriers, in 9th International Symposium of Fusion Nuclear Technology, 2009, Dalian, China

  7. J. Konys, W. Krauss, N. Holstein, Development of advanced processes for Al-based anticorrosion and T-permeation barriers. Fusion Eng. Des. 85, 2141–2145 (2010)

    Article  Google Scholar 

  8. E.R. Kumar, C. Danani, I. Sandeep, C. Chakrapani, P.N. Ravi, V. Chaudhari, Preliminary design of Indian Test Blanket Module for ITER. Fusion Eng. Des. 83, 1169–1172 (2008)

    Article  Google Scholar 

  9. D.L. Luo, J.F. Song, G.Q. Huang, C.A. Chen, Z.Y. Huang, X.J. Deng, Progress of China’s TBM Tritium Technology Progress of China’s TBM Tritium Technology Progress of China’s TBM Tritium Technology. Fusion Eng. Des. 87, 1261–1267 (2012)

    Article  Google Scholar 

  10. C.P.C. Wong, J.F. Salavy, Y. Kim, I. Kirillov, E.R. Kumar, N.B. Morley et al., Overview of liquid metal TBM concepts and programs. Fusion Eng. Des. 83, 850–857 (2008)

    Article  Google Scholar 

  11. K.S. Forcey, D.K. Ross, The formation of hydrogen permeation barriers on steels by aluminizing. J. Nucl. Mater. 182, 36–51 (1991)

    Article  ADS  Google Scholar 

  12. A. Aiello, A. Ciampichetti, G. Benamati, An overview on tritium permeation barrier development for WCLL blanket concept. J. Nucl. Mater. 329, 333, 1398–1402 (2004)

    Article  Google Scholar 

  13. H.G. Yang, Q. Zhan, W.W. Zhao, X.M. Yuan, Y. Hu, Z.B. Han, Study of an iron-aluminide and alumina tritium barrier coating. J. Nucl. Mater. 417, 1237–1240 (2011)

    Article  ADS  Google Scholar 

  14. C. Wei, G. Sang, J.F. Song, D.L. Luo, C.A. Chen, A deuterium permeation barrier by hot-dipping aluminizing on AISI321 steel. Int. J. Hydrogen Energy 48, 23125–23131 (2016)

    Google Scholar 

  15. G.K. Zhang, J. Li, C.A. Chen, S.P. Dou, G.P. Ling, Tritium permeation barrier-aluminized coating prepared by Al-plating and oxidation process. J. Nucl. Mater. 417, 1245–1248 (2011)

    Article  Google Scholar 

  16. G.K. Zhang, C.A. Chen, D.L. Luo, X.L. Wang, An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece. Fusion Eng. Des. 87, 1370–1375 (2012)

    Article  Google Scholar 

  17. F.L. Yang, X. Xiang, G.D. Lu, G.K. Zhang, T. Tang et al., Tritium permeation characterization of Al2O3/FeAl coating as tritium permeation barrier on 321 steel container. J. Nucl. Mater. 478, 144–148 (2016)

    Article  ADS  Google Scholar 

  18. C.A. Chen, D.L. Luo, J.F. Song, Z.Y. Huang, Design description document for CFETR fuel cycle (China Academy of Engineering Physics, Beijing, 2015)

    Google Scholar 

  19. G.K. Zhang, J. Li, C.A. Chen, Z.Y. Huang, G.P. Ling, New preparing method and performance of FeAl/Al2O3 tritium permeation barrier. Rare Metal Mater. Eng. 39, 1290–1294 (2010). (in Chinese)

    Google Scholar 

  20. G.K. Zhang, J. Li, C.A. Chen, Y. Li, G.P. Ling, Low-temperature Formation of aluminide coatings on HR-2 stainless steel. Acta Metall. Sin. 28, 983–987 (2009). (in Chinese)

    Google Scholar 

  21. N. Yeremenko, Y.V. Natanzon, V.I. Dybkov, The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron–liquid aluminium system. J. Mater. Sci. 16, 1748–1756 (1981)

    Article  ADS  Google Scholar 

  22. S.-E. Wulf, W. Krauss, J. Konys, Needs and gaps in the development of aluminum-based corrosion and T-permeation barriers for DEMO blankets. Fusion Eng. Des. 98&99, 2098–2102 (2015)

    Article  Google Scholar 

  23. Z.G. Zhang, F. Gesmundo, P.Y. Hou, Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corros. Sci. 48, 741–765 (2006)

    Article  Google Scholar 

  24. H.L. de Maubeuge, Influence of geometric variables on the current distribution uniformity at the edge of parallel plate electrodes. Electrochim. Acta 56, 10603–10611 (2011)

    Article  Google Scholar 

  25. M. Zamanzade, A. Barnoush, C. Motz, A review on the properties of iron aluminide itermetallics. Crystals 6, 10–29 (2016)

    Article  Google Scholar 

  26. R. Brajpuriya, T. Shripathi, Investigation of Fe/Al interfaces as a function of annealing temperature using XPS. Appl. Surf. Sci. 225, 6149–6154 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (No. 21471137) and National Magnetic Confinement Fusion Science Program (No. 2017YFE0300304) of China. We appreciate Mr. Jing Wenyong and Mr. Yang Pengfei for tritium permeation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guikai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, F., Lu, G. et al. Fabrication of Al2O3/FeAl Coating as Tritium Permeation Barrier on Tritium Operating Component on Quasi-CFETR Scale. J Fusion Energ 37, 317–324 (2018). https://doi.org/10.1007/s10894-018-0201-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0201-2

Keywords

Navigation