Skip to main content
Log in

Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Response regulator (RR) is known a protein that mediates cell’s response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L., and Storz, G. 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell90, 43–53.

    CAS  PubMed  Google Scholar 

  • Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev.27, 215–237.

    CAS  PubMed  Google Scholar 

  • Appukuttan, D., Singh, H., Park, S.H., Jung, J.H., Jeong, S., Seo, H.S., Choi, Y.J., and Lim, S. 2015. Engineering synthetic multi-stress tolerance in Escherichia coli using a deinococcal response regulator, DR1558. Appl. Environ. Microbiol.82, 1154–1166.

    PubMed  Google Scholar 

  • Basak, S. and Jiang, R. 2012. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS One7, e51179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard, J.L., Wholey, W.Y., Conlon, E.M., and Pomposiello, P.J. 2007. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One2, e1186.

    PubMed  PubMed Central  Google Scholar 

  • Calhoun, L. and Kwon, Y. 2011. Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J. Appl. Microbiol.110, 375–386.

    CAS  PubMed  Google Scholar 

  • Castanie-Cornet, M.P., Penfound, T.A., Smith, D., Elliott, J.F., and Foster, J.W. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol.181, 3525–3535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, M.K. 2002. Low temperature and oxidative stress. Curr. Sci.83, 109.

    Google Scholar 

  • Chiang, S.M. and Schellhorn, H.E. 2012. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys.525, 161–169.

    CAS  PubMed  Google Scholar 

  • Choi, S.H., Baumler, D.J., and Kaspar, C.W. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol.66, 3911–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico, S., Collins, T., Marx, J.C., Feller, G., and Gerday, C. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep.7, 385–389.

    PubMed  PubMed Central  Google Scholar 

  • De Maayer, P., Anderson, D., Cary, C., and Cowan, D.A. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep.15, 508–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debabov, V. 2015. Modern approaches to the creation of industrial microorganism strains. Russ. J. Genet.51, 365–376.

    CAS  Google Scholar 

  • Demain, A.L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol.52, 455–463.

    CAS  PubMed  Google Scholar 

  • Demain, A.L. 2006. From natural products discovery to commercialization: a success story. J. Ind. Microbiol. Biotechnol.33, 486–495.

    CAS  PubMed  Google Scholar 

  • Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev.82, 47–95.

    PubMed  Google Scholar 

  • Feller, G. 2017. Cryosphere and psychrophiles: insights into a cold origin of life? Life(Basel)7, E25.

    Google Scholar 

  • Feller, G. and Gerday, C. 1997. Psychrophilic enzymes: molecular basis of cold adaptation. Cell. Mol. Life Sci.53, 830–841.

    CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39, 783–791.

    PubMed  Google Scholar 

  • Fiedurek, J., Trytek, M., and Szczodrak, J. 2017. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress. J. Basic Microbiol.57, 445–459.

    CAS  PubMed  Google Scholar 

  • Fukai, T. and Ushio-Fukai, M. 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal.15, 1583–1606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, R., Mack, T.R., and Stock, A.M. 2007. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci.32, 225–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, G., Tian, B., Liu, L., Sheng, D., Shen, B., and Hua, Y. 2003. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair (Amst)2, 1419–1427.

    CAS  Google Scholar 

  • Guo, S., Yi, X., Zhang, W., Wu, M., Xin, F., Dong, W., Zhang, M., Ma, J., Wu, H., and Jiang, M. 2017. Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochem.61, 30–37.

    CAS  Google Scholar 

  • Haiyan, S. and Baoming, T. 2010. Radioresistance analysis of Deinococcus radiodurans gene DR1709 in Escherichia coli. Afr. J. Microbiol. Res.4, 1412–1418.

    Google Scholar 

  • Herrou, J., Crosson, S., and Fiebig, A. 2017. Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr. Opin. Microbiol.36, 47–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova, A.B., Glinsky, G.V., and Eisenstark, A. 1997. Role of rpoS regulon in resistance to oxidative stress and near-UV radiation in AoxyR suppressor mutants of Escherichia coli. Free Radic. Biol. Med.23, 627–636.

    CAS  PubMed  Google Scholar 

  • Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci.8, 275–282.

    CAS  PubMed  Google Scholar 

  • Joshi, S. and Satyanarayana, T. 2013. Biotechnology of cold-active proteases. Biology2, 755–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, I.L. and Kim, I.G. 2003. Polyamines reduce paraquat-induced soxS and its regulon expression in Escherichia coli. Cell Biol. Toxicol.19, 29–41.

    CAS  PubMed  Google Scholar 

  • Kamata, H. and Hirata, H. 1999. Redox regulation of cellular signalling. Cell. Signal.11, 1–14.

    CAS  PubMed  Google Scholar 

  • Karas, V.O., Westerlaken, I., and Meyer, A.S. 2015. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J. Bacteriol.197, 3206–3215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Lim, S., Park, S., Joo, J., and Choi, J. 2017. Enhancement of lysine production in recombinant Corynebacterium glutamicum through expression of Deinococcus radiodurans pprM and dr1558 genes. Microbiol. Biotechnol. Lett.45, 271–275.

    Google Scholar 

  • Krapp, A.R., Humbert, M.V., and Carrillo, N. 2011. The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology157, 957–965.

    CAS  PubMed  Google Scholar 

  • Lee, J.Y., Seo, J., Kim, E.S., Lee, H.S., and Kim, P. 2013. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett.35, 709–717.

    CAS  PubMed  Google Scholar 

  • Liochev, S.I., Benov, L., Touati, D., and Fridovich, I. 1999. Induction of the soxRS regulon of Escherichia coli by superoxide. J. Biol. Chem.274, 9479–9481.

    CAS  PubMed  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method. Methods25, 402–408.

    CAS  PubMed  Google Scholar 

  • McHugh, J.P., Rodríguez-Quiñones, F., Abdul-Tehrani, H., Svistunenko, D.A., Poole, R.K., Cooper, C.E., and Andrews, S.C. 2003. Global iron-dependent gene regulation in Escherichia coli: a new mechanism for iron homeostasis. J. Biol. Chem.278, 29478–29486.

    CAS  PubMed  Google Scholar 

  • Meng, J.Y., Zhang, C.Y., Zhu, F., Wang, X.P., and Lei, C.L. 2009. Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol.55, 588–592.

    CAS  PubMed  Google Scholar 

  • Mitrophanov, A.Y. and Groisman, E.A. 2008. Signal integration in bacterial two-component regulatory systems. Genes Dev.22, 2601–2611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mols, M. and Abee, T. 2011. Primary and secondary oxidative stress in Bacillus. Environ. Microbiol.13, 1387–1394.

    CAS  PubMed  Google Scholar 

  • Morita, Y., Nakamura, T., Hasan, Q., Murakami, Y., Yokoyama, K., and Tamiya, E. 1997. Cold-active enzymes from cold-adapted bacteria. J. Am. Oil Chem. Soc.74, 441–444.

    CAS  Google Scholar 

  • Nair, S. and Finkel, S.E. 2004. Dps protects cells against multiple stresses during stationary phase. J. Bacteriol.186, 4192–4198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S.H., Kim, G.B., Kim, H.U., Park, S.J., and Choi, J.I. 2019. Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol.131, 29–35.

    CAS  PubMed  Google Scholar 

  • Park, S.H., Singh, H., Appukuttan, D., Jeong, S., Choi, Y.J., Jung, J.H., Narumi, I., and Lim, S. 2017. PprM, a cold shock domain-containing protein from Deinococcus radiodurans, confers oxidative stress tolerance to Escherichia coli. Front. Microbiol.7, 2124.

    PubMed  PubMed Central  Google Scholar 

  • Pomposiello, P.J., Bennik, M.H., and Demple, B. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol.183, 3890–3902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pomposiello, P.J. and Demple, B. 2001. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol.19, 109–114.

    CAS  PubMed  Google Scholar 

  • Seo, S.W., Kim, D., Szubin, R., and Palsson, B.O. 2015. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep.12, 1289–1299.

    CAS  PubMed  Google Scholar 

  • Shimizu, K. 2013. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites4, 1–35.

    PubMed  PubMed Central  Google Scholar 

  • Si, M., Wang, J., Xiao, X., Guan, J., Zhang, Y., Ding, W., Chaudhry, M.T., Wang, Y., and Shen, X. 2015. Ohr protects Corynebacterium glutamicum against organic hydroperoxide induced oxidative stress. PLoS One10, e0131634.

    PubMed  PubMed Central  Google Scholar 

  • Smirnova, G.V., Muzyka, N.G., and Oktyabrsky, O.N. 2000. The role of antioxidant enzymes in response of Escherichia coli to osmotic upshift. FEMS Microbiol. Lett.186, 209–213.

    CAS  PubMed  Google Scholar 

  • Touati, D., Jacques, M., Tardat, B., Bouchard, L., and Despied, S. 1995. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J. Bacteriol.177, 2305–2314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbenko, V., Kuznetsova, L., Krup’ian, E., and Shalguev, V. 2009. Expression of gene recA of Deinococcus radiodurans in Escherichia coli cells. Russ. J. Genet.45, 1192.

    CAS  Google Scholar 

  • Wang, S. 2012. Bacterial two-component systems: structures and signaling mechanisms. In Huang, C. (ed.), Protein Phosphorylation in Human Health, pp. 439–466. InTech, Rijeka, Croatia.

    Google Scholar 

  • Wang, L., Yin, L., Xu, G., Li, M., Zhang, H., Tian, B., and Hua, Y. 2012. Cooperation of PprI and DrRRA in response to extreme ionizing radiation in Deinococcus radiodurans. Chin. Sci. Bull.57, 98–104.

    CAS  Google Scholar 

  • Weber, A., Kögl, S.A., and Jung, K. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol.188, 7165–7175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science286, 1571–1577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.H. 2015. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol. Adv.33, 1467–1483.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07049359), a Golden Seed Project Grant funded by Ministry of Oceans and Fisheries (213008-05-3-SB910), supporting program by Chonnam National University (2018-3367), and by the Nuclear R&D program of Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-il Choi.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Sj., Lim, S. & Choi, Ji. Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria. J Microbiol. 58, 131–141 (2020). https://doi.org/10.1007/s12275-020-9290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9290-5

Keywords

Navigation