Skip to main content
Log in

Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cerium (Ce3+)-substituted cobalt–nickel (Co–Ni) ferrite nanostructures of spinel cubic phase with space group Fd\(\bar{3}\)m had been successfully engineered by solution combustion route. The effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic investigations are probed by using X-ray diffraction (XRD), scanning electron microscope (SEM), and impedance analysis, respectively. Rietveld refinement of XRD data reveal that samples exhibit well-crystalline nature with single phase. The microstructural realm with various Ce3+ doping levels has been identified from SEM micrographs. The replacement of Fe3+ by Ce3+ cations has been confirmed by using energy-dispersive analysis of the ferrite samples. The dielectric constant (ε′), dielectric loss (tanδ), ac conductivity (σac), and impedance (Z′ and Z″) at room temperature is investigated as a function of frequency, respectively. The variation of dielectric properties ε′, tanδ, σac with frequency are explained by Maxwell–Wagner type of interfacial polarization and the hopping of charge between Fe2+ and Fe3+ as well as the dopant ions at B-sites. The decrease in dielectric constant and dielectric loss tangent with frequency follows the phenomenon of Debye’s relaxation. The enhancement in AC conductivity with frequency is proportional to Ce3+ concentration which follows Jonscher law. The complex impedance plots (Z′ vs. Z″) allows to determine the contribution for conductivity either from grain or grain boundary. Complex electric modulus plot (M′ vs. M″) provides the validation to the result drawn from the complex impedance plots. The results indicate the existence of non-Debye type of relaxation in these ferrites. Impedance spectroscopy allows the ferrite materials to estimate electrical properties which arise due to hopping and relaxation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H Z Duan, F L Zhou, X Cheng, G H Chen and Q L Li J. Magn. Magn. Mater.424 467 (2017)

    ADS  Google Scholar 

  2. V Jagadeesha Angadi, B Rudraswamy, K Sadhana, S R Murthy and K Praveena J. Alloy. Compd. 656 5 (2016)

    Google Scholar 

  3. K Ali, J Iqbal, T Jan, I Ahmad, D Wan and I Ahmad Mater. Chem. Phys.195 283 (2017)

    Google Scholar 

  4. A Ditta, M A Khana, M Junaid, R M A Khalil and M F Warsi Phys. B507 27 (2017)

    ADS  Google Scholar 

  5. V Jagadeesha Angadi, A V Anupama, R Kumar, S Matteppanavar, B Rudraswamy, B Sahoo J. Alloy Compd.682 263 (2016)

    Google Scholar 

  6. M Ajmal, M U Islam, G A Ashraf, M A Nazir and M I Ghouri, Phys. B.526 149 (2017)

    ADS  Google Scholar 

  7. K M Srinivasamurthy, V Jagadeesha Angadi, S P Kubrin, S Matteppanavar, P M Kumar, B Rudraswamy Ceram. Int.44 18878 (2018)

    Google Scholar 

  8. A Saini, P Kumar, B Ravelo, S Lallechere, A Thakur and P Thakur Int. J. Eng. Sci. Technol.19 911 (2016)

    Google Scholar 

  9. K Subbiah, L Han-Seung, L Y Su, J S Kumar, K Seung-Jun and N Rethinam Sens. Actuators B251 509 (2017)

    Google Scholar 

  10. B G Toksha, S E Shirsath, M L Mane and K M Jadhav Ceram. Int.43 14347 (2017)

    Google Scholar 

  11. T K Bromho, K Ibrahim, H Kabir, M M Rahman, K Hasan, T Ferdous, H Taha, M Altarawneh and Z-T Jiang Mater. Res. Bull.97 444 (2018)

    Google Scholar 

  12. M A Dar, K Majid, M H Najar, R K Kotnala, J Shah, S K Dhawan and M Farukh Phys. Chem. Chem. Phys.19 10629 (2017)

    Google Scholar 

  13. R Nivetha, C Santhosh, P Kollu, S K Jeong, A Bhatnagar and A N Grace J. Magn. Magn. Mater.448 165 (2018)

    ADS  Google Scholar 

  14. A A El Ata, M El Nimr, S Attia, D El Kony and A Al-Hammadi J. Magn. Magn. Mater.297 33 (2006)

    ADS  Google Scholar 

  15. M Y Lodhi, K Mahmood, A Mahmood, H Malik, M F Warsi, I Shakir, M Asghar and M A Khan Curr. Appl. Phys.14 716 (2014)

    ADS  Google Scholar 

  16. S Haralkar, R Kadam, S More, S E Shirsath, M Mane, S Patil and D Mane Phys. B: Condens. Matter.407 4338 (2012)

    ADS  Google Scholar 

  17. A B Gadkari, T J Shinde and P N Vasambekar Mater. Res. Bull.48 76 (2013)

    Google Scholar 

  18. V Jagadeesha Angadi, B Rudraswamy, K Sadhana, K Praveena J. Magn. Magn. Mater.409 111 (2016)

    ADS  Google Scholar 

  19. Z H Khan, M M Rahman, S S Sikder, M A Hakim and D K Saha J. Alloy. Compd.548 208 (2013)

    Google Scholar 

  20. S Pervin, M M Rahman, F Ahmed and M A Hakim Indian J. Phys86 12 (2012)

    Google Scholar 

  21. K M Srinivasamurthy, V Jagadeesha Angadi, S P Kubrin, S Matteppanavar, D A Sarychev, P M Kumar, H W Azale, B Rudraswamy Ceram. Int.44 9194 (2018)

    Google Scholar 

  22. M M Rahman, P K Halder, F Ahmed, T Hossain and M Rahaman J. Sci. Res.4 p 297 (2012)

    Google Scholar 

  23. V Jagadeesha Angadi, L Choudhury, K Sadhana, H-L Liu, R Sandhya, S Matteppanavar, B Rudraswamy, V Pattar, R V Anavekar and K Praveena J. Magn. Magn. Mater.424 1 (2017)

    ADS  Google Scholar 

  24. V Jagadeesha Angadi et al. Ceram. Int.43 523 (2016)

    Google Scholar 

  25. M F Al-hilli, S Li and K S Kassim J. Magn. Magn. Mater.324 873 (2012)

    ADS  Google Scholar 

  26. M M Rahman et al. J. Bangladesh Acad. Sci.36 199 (2012)

    Google Scholar 

  27. M M Mallapur,et al., J. Alloy. Compd.479 p 797 (2009)

    Google Scholar 

  28. C G Koops Phys. Rev.83 121 (1951)

    ADS  Google Scholar 

  29. J C Maxwell A Treatise on Electricity and Magnetism (New York: Oxford University Press) (1954)

  30. R C Kambale, P A Shaikh, C H Bhosale, K Y Rajpure and Y D Kolekar Smart Mater. Struct.18 085014 (2009)

    ADS  Google Scholar 

  31. D Varshney and K Verma Mater. Chem. Phys.140 412 (2013)

    Google Scholar 

  32. S B Patil, R P Patil, J S Ghodake and B K Chougule J. Magn. Magn. Mater.350 179 (2014)

    ADS  Google Scholar 

  33. U B Sontu, V Yelasani and V R R Musugu J. Magn. Magn. Mater.374 376 (2015)

    ADS  Google Scholar 

  34. K S Hemalatha, G Sriprakash, M V N A Prasad, R Damle and K Rukmani J. Appl. Phys.118 154103 (2015)

    ADS  Google Scholar 

  35. R G Kharabe, R S Devan, C M Kanamadi and B K Chougule Smart Mater. Struct.15 N36 (2006)

    Google Scholar 

  36. J Parashar, V K Saxena, J Sharma, D Bhatnagar and K B Sharma Macromol. Symp.357 43 (2015)

    Google Scholar 

  37. N Kumari, V Kumar and S K Singh RSC Adv.5 37925 (2015)

    Google Scholar 

  38. R S Devan, Y-R Ma and B K Chougule Mater. Chem. Phys.115 263 (2009)

    Google Scholar 

  39. M H Alimuddin, S Kumar, S E Shirsath, R K Kotnala, J Shah and R Kumar Mater. Chem. Phys.139 364 (2013)

    Google Scholar 

  40. K K Bharathi, J A Chelvane and G Markandeyulu J. Magn. Magn. Mater.321 3677 (2009)

    ADS  Google Scholar 

  41. K M Batoo and M S Ansari Nanoscale Res. Lett.7 112 (2012)

    ADS  Google Scholar 

  42. R Pandit, K K Sharma, P Kaur, R K Kotnala, J Shah and R Kumar J. Phys. Chem. Solids.75 558 (2014)

    ADS  Google Scholar 

  43. O M Hemeda, N Y Mostafa, O H AbdElkader, D M Hemeda, A Tawfik and M Mostafa J. Magn. Magn. Mater.394 96 (2015)

    ADS  Google Scholar 

  44. K M Batoo, S Kumar, C G Lee and M H Alimuddin, J. Alloy. Compd.480 596 (2009)

    Google Scholar 

  45. A A Kadam, S S Shinde, S P Yadav, P S Patil and K Y Rajpure, J. Magn. Magn. Mater.329 59 (2013)

    ADS  Google Scholar 

  46. A Sinha and A Dutta RSC Adv.5 100330 (2015)

    Google Scholar 

  47. H S Aziz, S Rasheed, R A Khan, A Rahim, J Nisar, S M Shah, F Iqbal and A R Khan RSC Adv.6 6589 (2016)

    Google Scholar 

  48. E Pervaiz and I H Gul, J. Phys. Conf. Ser.439 012015 (2013)

    Google Scholar 

  49. R S Yadav, I Kuřitka, J Vilcakova, J Havlica, L Kalina, P Urbánek, M Machovsky, D Skoda, M Masar and M Holek Ultrason. Sonochem.40 773 (2018)

    Google Scholar 

  50. A K Pradhan, P R Mandal, K Bera, S Saha and T K Nath Phys. B.525 1 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Ministry of Education and Science of the Russian Federation (Projects 3.5346.2017/8.9). This study is partially supported by the Ministry of Education and Science of the Russian Federation (Projects 3.6371.2017/8.9, 3.6439.2017/8.9). The dielectric spectroscopy measurements were performed using the equipment of the Shared Research Facility Centre of Research Institute of Physics, Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shidaling Matteppanavar or V. Jagadeesha Angadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasamurthy, K.M., Manjunatha, K., Sitalo, E.I. et al. Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications. Indian J Phys 94, 593–604 (2020). https://doi.org/10.1007/s12648-019-01495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01495-7

Keywords

PACS Nos.

Navigation