Skip to main content
Log in

Existence and Regularity of Solutions for a Choquard Equation with Zero Mass

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper concerns with the existence and regularity of solutions for the following Choquard type equation,

$$-\Delta_u = \big(I_{\mu} * F(u)\big) f(u) {\rm in} \mathbb{R}^3, \quad \quad (P)$$

where \({I_\mu = \frac{1}{|x|^\mu}, 0 < \mu < 3}\), is the Riesz potential, \({F(s)}\) is the primitive of the continuous function f(s), and \({I_{\mu} * F(u)}\) denotes the convolution of \({I_{\mu}}\) and F(u). By using the variational method, we prove that problem (P), in the zero mass case, possesses at least a nontrivial solution under certain conditions on f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., Montenegro M., Souto M.A.: Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc. Var. Partial Differential Equations 43, 537–554 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alves C.O., Souto M.A.S.: Existence of solutions for a class of elliptic equations in \({\mathbb{R}^N}\) with vanishing potentials. J. Differential Equations 254, 1977–1991 (2013)

    Article  MathSciNet  Google Scholar 

  3. Alves C.O., Figueiredo G.M., Yang M.: Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Advances in Nonlinear Analysis 5, 331–346 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    Article  MathSciNet  Google Scholar 

  5. A. Azzollini and A. Pomponio, On a ”zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 no. 4 (2007), 599-627.

  6. A. Azzollini and A. Pomponio, Compactness results and applications to some ”zero mass” elliptic problems, Nonlinear Anal. 69 no. 10 (2008), 3559–3576.

    Article  MathSciNet  Google Scholar 

  7. V. Benci, C.R. Grisanti and A.M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with \({V (\infty) = 0}\), in: Progr. Nonlinear Differential Equations Appl., vol. 66, pp. 53–65, Birkhäuser, Basel, 2005

  8. V. Benci, C.R. Grisanti and A.M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with \({V (\infty) = 0}\), Topol. Methods in Nonlinear Anal. 26 (2005), 203–219.

  9. Berestycki H., Lions P.L.: Nonlinear scalar field equations, I existence of a ground state. Archive for Rational Mechanics and Analysis 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  10. Berestycki H., Gallouet T., Kavian O.: Equations de Champs scalaires euclidiens non linaires dans le plan. C.R. Acad. Sci. Paris Ser. I Math. 297, 307–310 (1984)

    MATH  Google Scholar 

  11. Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Cingolani S., Clapp M., Secchi S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  Google Scholar 

  13. J.T. Devreese and A.S. Alexandrov, Advances in polaron physics, Springer Series in Solid-State Sciences, vol. 159, Springer, 2010.

  14. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}^N}\), Proc. Royal Soc. Edin. 129A (1999), 787–809.

  15. Jones K.R.W.: Newtonian Quantum Gravity. Australian Journal of Physics 48, 1055–1081 (1995)

    Article  Google Scholar 

  16. Lenzmann E.: Uniqueness of ground states for pseudo-relativistic Hartree equations. Anal. PDE 2, 1–27 (2009)

    Article  MathSciNet  Google Scholar 

  17. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93–105.

    Article  MathSciNet  Google Scholar 

  18. E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, AMS, Providence, Rhode island, 2001.

    Google Scholar 

  19. P.L. Lions, The concentration-compactness principle in the Calculus ov Variations. The Locally compact case, part 2, Anal. Inst. H. Poincaré Section C 1 (1984), 223–283.

    Article  Google Scholar 

  20. Lions P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  21. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  22. Menzala G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. Roy. Soc. Edinburgh Sect. A 86, 291–301 (1980)

    Article  MathSciNet  Google Scholar 

  23. C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrodinger-Poisson-Slater equations at the critical frequency. Calc. Var. Partial Differential Equations 55 (2016), 146. https://doi.org/10.1007/s00526-016-1079-3

  24. V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equation: Hardy- Littlewood-Sobolev critical exponent, to appear in Commun. Contemp. Math., available at arXiv:1403.7414v1

  25. Moroz V., Van Schaftingen J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  26. Moroz V., Van Schaftingen J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  27. Moroz I.M., Penrose R., Tod P.: Spherically-symmetric solution of the Schrödinger- Newton equation. Classical Quantum Gravity 15, 2733–2742 (1998)

    Article  MathSciNet  Google Scholar 

  28. Pekar S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie-Verlag, Berlin (1954)

    MATH  Google Scholar 

  29. Secchi S.: A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)

    Article  MathSciNet  Google Scholar 

  30. M. Struwe, Variational Methods: Applications and to Partial Differential Equations and Hamiltonian systems, 4th ed., Springer, 2007.

  31. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici 60, 558–581 (1985)

    Article  MathSciNet  Google Scholar 

  32. J. Zhang and W. Zou, A Berestycki–Lions theorem revisited, Comm. Contemp. Math. 14 (2012), 1250033–1.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Research of C.O. Alves was partially supported by CNPq 304804/2017-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Yang, J. Existence and Regularity of Solutions for a Choquard Equation with Zero Mass. Milan J. Math. 86, 329–342 (2018). https://doi.org/10.1007/s00032-018-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0289-x

Mathematics Subject Classification (2010)

Keywords

Navigation