Skip to main content
Log in

Generation of 3D Microparticles in Microchannels with Non-rectangular Cross Sections

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Flow lithography in a conventional rectangular microchannel is limited to fabrication of particles for which only the shapes of top perimeters are controlled. We present a flow lithography technique for fabrication of microparticles of diverse 3D shapes and multiple layers using non-rectangular microchannels with designed cross sections that allow the creation of complex shapes and diverse cross-sectional shapes. Variations in cross-sectional shape allow high-throughput, on-demand production of microparticles in unconventional shapes such as tetrahedrons and pyramids. Multilayered 3D particles were generated in an enlarging triangular channel combined with on-chip PDMS valves, which allow particle alignment and fluid exchange. These 3D microparticles are expected to further expand the wide variety of applications of microparticles, especially in drug delivery and tissue engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jang, J.H., Dendukuri, D., Hatton, T.A., Thomas, E.L. & Doyle, P.S. A route to three-dimensional structures in a microfluidic device: Stop-flow interference lithography. Angew. Chem., Int. Ed. Engl. 46, 9027–9031 (2007).

    CAS  Google Scholar 

  2. Dendukuri, D. & Doyle, P.S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).

    CAS  Google Scholar 

  3. Dendukuri, D., Pregibon, D.C., Collins, J., Hatton, T. A. & Doyle, P.S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).

    CAS  PubMed  Google Scholar 

  4. Dendukuri, D., Gu, S.S., Pregibon, D.C., Hatton, T. A. & Doyle, P.S. Stop-flow lithography in a microfluidic device. Lab Chip. 7, 818–828 (2007).

    CAS  PubMed  Google Scholar 

  5. Champion, J.A., Katare, Y.K. & Mitragotri, S. Particle shape: A new design parameter for microand nanoscale drug delivery carriers. J. Controlled Release. 121, 3–9 (2007).

    CAS  Google Scholar 

  6. Paulsen, K.S., Di Carlo, D. & Chung, A.J. Optofluidic fabrication for 3D-shaped particles. Nat. Commun. 6, 6976 (2015).

    PubMed  Google Scholar 

  7. Walther, A. & Müller, A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 113, 5194–5261 (2013).

    CAS  PubMed  Google Scholar 

  8. Bong, K.W., Pregibon, D.C. & Doyle, P.S. Lock release lithography for 3D and composite microparticles. Lab Chip. 9, 863–866 (2009).

    CAS  PubMed  Google Scholar 

  9. Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    CAS  Google Scholar 

  10. Parekh, N., Hushye, C., Warunkar, S., Sen Gupta, S. & Nisal, A. In vitro study of novel microparticle based silk fibroin scaffold with osteoblast-like cells for load- bearing osteo-regenerative applications. RSC Adv. 7, 26551–26558 (2017).

    CAS  Google Scholar 

  11. Chen, Q., Dong, C., Jing, W. & Jin-Ming, L. Flexible control of cellular encapsulation, permeability, and release in a droplet- templated bifunctional copolymer scaffold. Biomicrofluidics 10, 064115 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Murthy, B.R.S., Ramanathan, G. & Sivagnanam, U.T. Fabrication of chitosan microparticles loaded in chitosan and poly (vinyl alcohol) scaffolds for tissue engineering application. Bull. Mater. Sci. 40, 645–653 (2017).

    CAS  Google Scholar 

  13. LaVan, D.A, McGuire, T. & Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003).

    CAS  PubMed  Google Scholar 

  14. Yu, X., Khalil, A., Dang, P.N., Alsberg, E. & Murphy, W.L. Multilayered Inorganic Microparticles for Tunable Dual Growth Factor Delivery. Adv. Funct. Mater. 24, 3082–3093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, W.L. & Loo, S.C.J. Revolutionizing drug delivery through biodegradable multilayered particles evolutionizing drug delivery through biodegradable multilayered particles. J. Drug Targeting 2330, 632–647 (2017).

    Google Scholar 

  16. Li, W.L., Yu, P., Hong, M., Widjaja, E. & Loo, S.C.J. Designing multilayered particulate systems for tunable drug release profile. Acta Biomater. 8, 2271–2278 (2012).

    Google Scholar 

  17. Santhosh, K.T., Alizadeh, A. & Karimi-abdolrezaee, S. Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. J. Controlled Release 261, 147–162 (2017).

    CAS  Google Scholar 

  18. Kim, M.A., Yoon, S.D. & Lee, C.-M. A drug release system induced by near infrared laser using alginate microparticles containing melanin. Int. J. Biol. Macromol. 103, 839–844 (2017).

    CAS  PubMed  Google Scholar 

  19. Wang, W., Zhang, M.J. & Chu, L.Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 47, 373–384 (2014).

    CAS  PubMed  Google Scholar 

  20. Nisisako, T. Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016).

    CAS  Google Scholar 

  21. Utada, A.S., Fernandez-Nieves, A., Stone, H.A. & Weitz, D.A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99, 1–4 (2007).

    Google Scholar 

  22. Choi, N.W., Kim, J., Chapin, S.C., Duong, T., Donohue, E., Pandey, P., Broom, W., Hill, W.A. & Doyle, P.S. Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles. Anal. Chem. 84, 9370–9378 (2012).

    CAS  PubMed  Google Scholar 

  23. Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A.P. Droplet microfluidics. Lab Chip. 8, 198–220 (2008).

    CAS  PubMed  Google Scholar 

  24. Shum, H.C., Abate, A.R., Lee, D., Studart, A.R., Wang, B., Chen, C.H., Thiele, J., Shah, R.K., Krummel, A. & Weitz, D.A. Droplet microfluidics for fabrication of non-spherical particles. Macromol. Rapid Commun. 31, 108–118 (2010).

    CAS  PubMed  Google Scholar 

  25. Wurm, F. & Kilbinger, A.F.M. Polymeric janus particles. Angew. Chem. Int. Ed. 48, 8412–8421 (2009).

    CAS  Google Scholar 

  26. Lee, S.A., Chung, S.E., Park, W., Lee, S.H. & Kwon, S. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip. 9, 1670–1675 (2009).

    CAS  PubMed  Google Scholar 

  27. Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F.H., Connelly, R., Torquato, S. & Chaikin, P.M. Improving the Density of Jammed Disordered Packings Using Ellipsoids. Science 303, 990–993 (2004).

    CAS  PubMed  Google Scholar 

  28. Vukusic, P. & Sambles, J.R. Photonic structures in biology. Nature. 424, 852–855 (2003).

    CAS  PubMed  Google Scholar 

  29. Champion, J.A, Katare, Y.K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. U. S. A. 104, 11901–11904 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, S.-H., Kim, K., Choi, S.-E, Han, S., Lee, H.-S., Kwon, S. & Park, W. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication. Opt. Lett. 39, 5162–5165 (2014).

    PubMed  Google Scholar 

  31. Haghgooie, R., Toner, M. & Doyle, P.S. Squishy Non-Spherical Hydrogel Microparticlesa. Macromol. Rapid Commun. 31, 128–134 (2010).

    CAS  PubMed  Google Scholar 

  32. El-Sherbiny, I.M., El-baz, N.M. & Yacoub, M.H. Inhaled nano- and microparticles for drug delivery. Glob. Cardiol. Sci. Pract. 1–14 (2015).

    Google Scholar 

  33. Chen, J., Clay, N. & Kong, H. Non-Spherical Particles for Targeted Drug Delivery. Chem. Eng. Sci. 125, 20–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shepherd, R.F., Panda, P., Bao, Z., Sandhage, K.H., Hatton, T.A., Lewis, J.A. & Doyle, P.S. Stop-flow lithography of colloidal, glass, and silicon microcomponents. Adv. Mater. 20, 4734–4739 (2008).

    CAS  Google Scholar 

  35. Baah, D., Donnell, T., Srinivasan, S. & Floyd-smith, T. Stop Flow Lithography Synthesis and Characterization of Structured Microparticles. J. Nanomater. 2014, 142929 (2014).

    Google Scholar 

  36. Lu, Y., Yin, Y. & Xia, Y. Three-dimensional photonic crystals with non-spherical colloids as building blocks. Adv. Mater. 13, 415–420 (2001).

    CAS  Google Scholar 

  37. Pregibon, D.C., Toner, M. & Doyle, P.S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science. 315, 1393–1396 (2007).

    CAS  PubMed  Google Scholar 

  38. Baule, A. & Makse, H.A. Fundamental challenges in packing problems: From spherical to non-spherical particles. Soft Matter 10, 4423–4429 (2014).

    CAS  PubMed  Google Scholar 

  39. Kim, J., Lee, J., Wu, C., Nam, S., Di Carlo, D. & Lee, W. Inertial focusing in non-rectangular crosssection microchannels and manipulation of accessible focusing positions. Lab Chip. 16, 992–1001 (2016).

    CAS  PubMed  Google Scholar 

  40. Koh, J., Kim, J., Shin, J.H. & Lee, W. Fabrication and integration of microprism mirrors for high-speed three-dimensional measurement in inertial microfluidic system. Appl. Phys. Lett. 105, 114103, (2017).

    Google Scholar 

  41. Wang, Z., Volinsky, A.A. & Gallant, N.D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050, 1–4 (2014).

    Google Scholar 

  42. Studer, V., Hang, G., Pandolfi, A., Ortiz, M., Anderson, W.F. & Quake, S.R. Scaling properties of a low-actuation pressure microfluidic valve. J. Appl. Phys. 95, 393–398 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2015M2A2A4A02044826) as well as the Advanced Research Program of National Research Foundation of Korea (NRF-2017R1A2B4005933).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wook Park or Wonhee Lee.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

These authors contrilbuted equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, S.M., Kim, K., Kang, IS. et al. Generation of 3D Microparticles in Microchannels with Non-rectangular Cross Sections. BioChip J 13, 226–235 (2019). https://doi.org/10.1007/s13206-019-3308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3308-2

Keywords

Navigation