Skip to main content
Log in

A Hollow Polyethylene Fiber-Based Artificial Muscle

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Recently, researches on artificial muscles for imitating the functions of the natural muscles has attracted wide attention. The fiber-shape actuators, shape-memory materials or deforming devices, which are similar to human muscle fiber bundles, have extensively studied and provided more possibilities for artificial muscles. Herein, we develop a thermal responsible fiber-shaped actuator based on the low-cost hollow polyethylene fiber. The sheath-core structured fibrous actuators and the stainless-steel conductive yarn winded pre-stretched polyethylene actuators are fabricated with the heating assisted pre-stretching procedure. The actuation mechanism of the thermal-responsive orientation change of molecular chains driving the actuation is discussed and demonstrated by 2D XRD patterns. These polyethylene-based fibrous actuators displayed three significant advantages including (i) color-turning and shape-changing bifunctional response, (ii) direct joule heating actuation and (iii) effective contraction (18% shrinkage of the pristine length) and lifting ability (the ratio of lifting weight to self-weight is up to 50).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407.

    Article  Google Scholar 

  2. Qiu Y, Zhang E, Plamthottam R, Pei Q. Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc Chem Res. 2019;52:316.

    Article  CAS  Google Scholar 

  3. Mu J, Jung de Andrade M, Fang S, Wang X, Gao E, Li N, Kim SH, Wang H, Hou C, Zhang Q, Zhu M, Qian D, Lu H, Kongahage D, Talebian S, Foroughi J, Spinks G, Kim H, Ware TH, Sim HJ, Lee DY, Jang Y, Kim SJ, Baughman RH. Sheath-run artificial muscles. Science. 2019;365:150.

    CAS  Google Scholar 

  4. Kanik M, Orguc S, Varnavides G, Kim J, Benavides T, Gonzalez D, Akintilo T, Tasan CC, Chandrakasan AP, Fink Y, Anikeeva P. Strain-programmable fiber-based artificial muscle. Science. 2019;365:145.

    CAS  Google Scholar 

  5. Haines CS, Li N, Spinks GM, Aliev AE, Di J, Baughman RH. New twist on artificial muscles. Proc Natl Acad Sci USA. 2016;113:11709.

    Article  CAS  Google Scholar 

  6. Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH, STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400.

    Article  CAS  Google Scholar 

  7. Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotechnol. 2015;10:1077.

    Article  CAS  Google Scholar 

  8. Chen J, Leung FK, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, Feringa BL. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132.

    Article  CAS  Google Scholar 

  9. Fang B, Xiao Y, Xu Z, Chang D, Wang B, Gao W, Gao C. Handedness-controlled and solvent-driven actuators with twisted fibers. Mater Horiz. 2019. https://doi.org/10.1039/c8mh01647j.

    Article  Google Scholar 

  10. Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R, Liu Z, Cheng Y, Su Y, Minary-Jolandan M, Baughman RH, Qian D, Liu Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater. 2019;29:1808241.

    Article  Google Scholar 

  11. Kim H, Moon JH, Mun TJ, Park TG, Spinks GM, Wallace GG, Kim SJ. Thermally responsive torsional and tensile fiber actuator based on graphene oxide. ACS Appl Mater Interfaces. 2018;10:32760.

    Article  CAS  Google Scholar 

  12. Yahara S, Wakimoto S, Kanda T, Matsushita K. McKibben artificial muscle realizing variable contraction characteristics using helical shape-memory polymer fibers. Sens Actuators A. 2019;295:637.

    Article  CAS  Google Scholar 

  13. Yu Q, Yang X, Chen Y, Yu K, Gao J, Liu Z, Cheng P, Zhang Z, Aguila B, Ma S. Fabrication of light-triggered soft artificial muscles via a mixed-matrix membrane strategy. Angew Chem Int Ed Engl. 2018;57:10192.

    Article  CAS  Google Scholar 

  14. Roach DJ, Yuan C, Kuang X, Li VC, Blake P, Romero ML, Hammel I, Yu K, Qi HJ. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces. 2019;11:19514.

    Article  CAS  Google Scholar 

  15. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  16. Shi Q, Li J, Hou C, Shao Y, Zhang Q, Li Y, Wang H. A remote controllable fiber-type near-infrared light-responsive actuator. Chem Commun. 2017;53:11118.

    Article  CAS  Google Scholar 

  17. Sun Y, Wang Y, Hua C, Ge Y, Hou S, Shang Y, Cao A. Water-responsive helical graphene-oxide fibers incorporating a continuous carbon nanotube network. Carbon. 2018;132:394.

    Article  CAS  Google Scholar 

  18. Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Ed. 2013;52:10482.

    Article  CAS  Google Scholar 

  19. Meng J, Hou C, Zhang Q, Li Y, Wang H. Light-driven artificial muscles based on electrospun microfiber yarns. Sci China Technol Sci. 2019;62:965.

    Article  CAS  Google Scholar 

  20. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, Jung de Andrade M, Goktepe F, Goktepe O, Mirvakili SM, Naficy S, Lepro X, Oh J, Kozlov ME, Kim SJ, Xu X, Swedlove BJ, Wallace GG, Baughman RH. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868.

    Article  CAS  Google Scholar 

  21. Kim K, Cho KH, Jung HS, Yang SY, Kim Y, Park JH, Jang H, Nam J-D, Koo JC, Moon H, Suk JW, Rodrigue H, Choi HR. Double helix twisted and coiled soft actuator from spandex and nylon. Adv Eng Mater. 2018;20:1800536.

    Article  Google Scholar 

  22. Huang Y-W, Lee W-S, Yang F, Lee S. Tensile deformation of artificial muscles: annealed nylon 6 lines. Polymer. 2019;177:49.

    Article  CAS  Google Scholar 

  23. Maksimkin AV, Kaloshkin SD, Zadorozhnyy MV, Senatov FS, Salimon AI, Dayyoub T. Artificial muscles based on coiled UHMWPE fibers with shape memory effect. Express Polym Lett. 2018;12:1072.

    Article  CAS  Google Scholar 

  24. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang SL, Mirfakhrai T, Madden JDW, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science. 2011;334:494.

    Article  CAS  Google Scholar 

  25. Li K, Shao Y, Yan H, Lu Z, Griffith KJ, Yan J, Wang G, Fan H, Lu J, Huang W. Lattice-contraction triggered synchronous electrochromic actuator. Nat Commun. 2018;9:4798.

    Article  Google Scholar 

  26. Mu J, Wang G, Yan H, Li H, Wang X, Gao E, Hou C, Pham ATC, Wu L, Zhang Q, Li Y, Xu Z, Guo Y, Reichmanis E, Wang H, Zhu M. Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat Commun. 2018;9:590.

    Article  Google Scholar 

  27. Behl M, Kratz K, Noechel U, Sauter T, Lendlein A. Temperature-memory polymer actuators. Proc Natl Acad Sci USA. 2013;110:12555.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the Manned Spaceflight Advanced Research Funds (17620504) and the Fundamental Research Funds for the Central Universities (16D310606, 17D310606, 106-06-0019058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuwei Shi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Li, J. & Shi, Q. A Hollow Polyethylene Fiber-Based Artificial Muscle. Adv. Fiber Mater. 1, 214–221 (2019). https://doi.org/10.1007/s42765-019-00019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00019-6

Keywords

Navigation